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Abstract—A business process is first and foremost a social in-
teraction among multiple participants. Business process modeling
languages support the description of business processes in oper-
ational terms, as collections of interleaved activities conducted
by human and software agents. However, such descriptions do
not capture adequately the richness of social interaction among
participants. To address this deficiency, we propose Azzurra,
a specification language for modeling and enacting business
processes. Azzurra is founded on social concepts, such as roles,
agents and commitments among them, and Azzurra specifications
are social models consisting of sets of commitments. As such,
Azzurra specifications support flexible executions of business
processes, and provide a semantic notion of actor accountability
and business process compliance. In this paper, we present
syntax and semantics of Azzurra, and we propose algorithms
to determine runtime compliance with an Azzurra specification.

I. INTRODUCTION

Specification languages enable to describe systems at an
abstract level that hides away implementation detail. As such,
they have been found useful for building early models of a
system that are readily analyzable to determine its properties
before built. Unsurprisingly, there are dozens of specification
languages for software (e.g., Z [28] and VDM [16]), hardware,
concurrent processes, interfaces, and more.

We aim to develop a specification language for business
processes. As such, our language should abstract away op-
erational details, the exact activities to be performed and
the control flow. We adopt social concepts as specification
primitives. After all, business processes are social phenomena
consisting of social interactions among multiple participants.
For example, an order fulfillment business process is enacted
through social interactions among supply order managers,
client liaisons, customers, warehouse managers and shippers.

Existing business process modeling languages (e.g.,
BPMN [21], BPEL [1]) describe processes in terms of in-
terleaved activities conducted by human and software agents.
These languages are operational in that they prescribe the
execution of specific activities over time in accordance with a
rigid control flow. Van der Aalst rightly observes [31] that it is
challenging to specify flexible workflows in such languages.
While one can model explicitly all the variants of process,
the specification becomes unwieldy and unmanageable, too
complex to be extensible or even comprehensible [12], [24].
Declarative workflow languages go a step forward in ad-
dressing this problem by expressing only essential temporal
precedence constraints between activities [31].

This paper takes another step towards specifications that
abstract away operational details. Business process modeling
languages are grounded on computer system process concepts,
rather than social ones. Thus, they require the wrong kind
of detail by focusing on how a business process is to be
enacted, rather than what it is intended to achieve and who
is accountable for it. With an eye on hiding away operational
details to enable flexible executions of processes, we adopt the
notion of social commitment [26] among actors in a business
process as the fundamental business process abstraction.

A commitment is a social contract between two actors
of the form “An actor commits to another actor to make a
condition true if another condition is true”. Note that commit-
ments do not specify activities, but rather the conditions that
must hold when a commitment is fulfilled. Commitments, like
expressions in temporal logic, are declarative. However, unlike
expressions in temporal logic, they also constitute a high-level
social abstraction that the participants in a business process en-
act. Commitments explicitly capture the social responsibilities
of actors towards each other. Sociologists have known for some
time the fundamental role commitments play in understanding
social activity [2].

Building on top of commitments [26] and commitment
protocols [35], we propose Azzurra, a specification language
for business processes that relies upon social primitives. Our
contributions are as follows:

• We propose an expressive language for specifying busi-
ness processes as commitment protocols. The language
includes business primitives such as delegations, dead-
lines, and constraints over roles. Azzurra offers a notion of
initiation and termination of a protocol, and also supports
protocol cross-references.

• We introduce a graphical notation for modeling the main
elements of a business process. This notation is supported
by a prototype Eclipse-based modeling tool.

• We provide algorithms to determine whether a set of
observed events complies with an Azzurra protocol spec-
ification. These have been implemented in Java using the
Drools rule engine language. Noncompliance can be dealt
with by an enactment engine that is able to carry out
compensation tactics.

• We present two applications of Azzurra on scenarios from
real-world case studies, that clearly compare it against
mainstream business process modeling approaches.

The rest of the paper is structured as follows. Section II
presents our research baseline. Section III defines syntax and978-1-4673-6630-4/15/$31.00 c© 2015 IEEE



semantics of Azzurra, and Section IV introduces algorithms
to detect compliance with an Azzurra specification. Section V
describes our implementation of design- and run-time tooling.
Section VI evaluates our language through a comparative
evaluation that involves two different scenarios. Section VII
contrasts Azzurra with related work. Finally, Section VIII
presents conclusions and outlines future work.

II. BASELINE: COMMITMENTS AND PROTOCOLS

In order to specify business processes in social terms, we
need conceptual primitives for representing social interaction.
Our choice is to rely on commitments, which have been
studied as a fundamental social primitive in social sciences [2],
computer-supported collaborative work [13], and multiagent
systems [26]. Commitments are social abstractions, as they
carry a social meaning (they are contracts).

A social commitment [26], formally c(x,y,p,q), is a promise
with contractual validity made by an agent x (debtor) to
another agent y (creditor) that, if proposition p is brought
about (antecedent), then proposition q will be brought about
(consequent). If p is true (>), the commitment is unconditional;
otherwise, it is conditional.

Commitments change when their two agents interact by
exchanging messages. Messages constitute commitment op-
erations: (i) creation: the debtor commits to the creditor
that the consequent will be brought about; (ii) cancellation:
the debtor cancels an existing commitment; (iii) release: the
creditor releases the debtor from a previous commitment; (iv)
delegation: the debtor delegates the commitment to a third
party; and (v) assignment: the creditor assigns its credit to
another actor.

Moreover, declare operations let an agent inform another
that a certain proposition has changed truth value (e.g., the
book has been sent). Declare operations enable the change of
commitment state. A commitment is detached when the debtor
is informed (through a declare) that the antecedent has been
brought about, and the commitment becomes unconditional.
A commitment is discharged/fulfilled, when the creditor is
informed that the consequent has been brought about.

We adopt a version of commitments [19] where antecedent
and consequent are expressed in propositional logic extended
with a temporal precedence operator “·”. Thus, (p ∧ q) · r
means that p and q occur (in any order) before r occurs.

Commitments can be abstracted to the class level to define
an interaction (business) protocol between roles [7], [9]. For
instance, given roles R1 and R2, a protocol may include a com-
mitment class such as C(R1,R2,P,Q). Thus, an agent playing
role R1 is expected to create instances of this commitment (to
some agent playing R2). The propositions in such commitment
will be instantiated too: if P is “Book sent”, a possible instance
p is “copy 123 of book Dracula sent”.

III. SYNTAX AND SEMANTICS OF AZZURRA

We present the Extended BackusNaur Form (EBNF) syntax
of Azzurra and its runtime semantics. The syntax is presented
in Table I and illustrated in Table II on the fracture treatment
scenario from the literature [31]. Fig. 1 shows a graphical

notation for visualizing the main elements of an Azzurra spec-
ification; the notation can be used via a prototype modeling
tool built on top of Eclipse (see Sec. V-A). The semantics is
explained textually while describing the EBNF syntax.

Notational conventions. We denote classes with identifiers
that have a leading capital letter, and instances with identifiers
that have a leading lowercase letter.

Protocol signature (1,3). A protocol (1) has an identifier pid

and a set of parameters (3): a “key” variable that is the unique
identifier for the instances of that protocol, and a set of agent
variables (two or more) associated with specific roles. Protocol
designers are responsible for choosing a meaningful key for the
protocol. The agent variables indicate those agents that play
certain roles when a protocol is instantiated. The semantics of
protocol instantiation is explained later in this section.

Example. In the treatment protocol in Table II, the protocol
name is Treatment, the key is the hospitalization number
hospnr, the agent variables are patient pt and specialist sp.

Protocol body (2). It includes a set of typed agent variables
(their type is a role), a set of commitment classes, a set
of protocol refinements (optional), and a knowledge base
that defines semantic relations between atomic propositions
(optional).

Example. In Table II, there are five agent variables, including
rc (a rehab centre) and ra (a radiologist), nine commitments
(C1–C9), and two commitment refinements.

Commitments (5,6). The core of a protocol (5) consists of
commitment classes. A commitment in Azzurra (6) extends
the semantics presented in our baseline in different ways.
First, we introduce the notion of a strong commitment (C∗),
where the debtor commits to bring about the consequent
only after the antecedent has occurred. Second, given that
commitments belong in a specific Azzurra protocol, every
state of affairs appearing in the antecedent and consequent
of a commitment (e.g., Examined, Diagnosed) has an implicit
parameter, i.e., the key of the protocol. This parameter enables
relating commitment instances associated with one protocol
instance (e.g., examined(121) and diagnosed(234) refer to
two different protocol instances, each concerning a specific
patient hospitalization). Third, Azzurra enriches the syntax of
commitments with triggers and creation deadlines. A trigger—
the expression before the � symbol—is an event that triggers
a commitment creation. Triggers may have an associated
precondition—[prec] in (5)—that indicates that, when the event
occurs, the commitment shall be created only if the precondi-
tion evaluates to true. A deadline (≤time) specifies that the
commitment has to be created within a certain time period after
the trigger event fires off. Finally, Azzurra supports two special
types of commitments that relate to protocol instantiation and
termination:

• Initial commitments are created when a protocol is instan-
tiated. Their trigger is “init”, an event that occurs when
a protocol is instantiated. Debtor and creditor of initial
commitments shall be agent variables in the parameters
of the protocol. This way, initial commitments are created
between couples of agents (debtor and creditor do not
refer to unassigned agent variables).



• Final commitments: every protocol must contain at least
one final commitment. A protocol instance terminates suc-
cessfully when any of its final commitments is fulfilled,
while it terminates unsuccessfully if all final commitments
are violated (e.g., cancelled by the debtor). Final com-
mitments are also initial. When a protocol terminates, all
debtors of active commitments are released from their
responsibility towards the respective creditors.

TABLE II: Azzurra protocol for the fracture treatment scenario

protocol Treatment (key hospnr, pt : Patient, sp : Specialist) {
ag-variables: rc : RehabCentre, ra : Radiologist, or : Orthopedist,
su : Surgeon, nu : Nurse;

commitments:
init � C1 : C(sp, pt, >, Examined · Diagnosed · Dehospd) final
NoXRayNeeded � C2 : C(or, sp, >, SlingMade)
XRayRequested � C3 : C(ra, sp, >, XRayPerformed)
XRayRequested �

C4 : C∗(sp, ra, XRayPerformed, FractAssessed)
FractAssessed � C5 : C(or, sp, >, ((Fixated⊕Plastered)
∨ fulfil(C6) ∨ SlingMade))

FractAssessed �≤2h C6 : C∗(su, or, SurgeryRequested,
Operated)

Operated [¬fused] � C7 : C(nu, pt, >, RcChosen(rc))
RcChosen(rc) � C8 : C(rc, pt, >, fulfil-p(RehabGiven,

key=hospnr, pat-id=pt, ref-sp=sp))
MedPrescribed(m) � C9 : C(nu, sp, >, MedApplied(m))
can-deleg-no-resp(C3)
deadline(C2, 2h)

protocol refinements:
role-confl(Radiologist,Orthopedist)

kb:
implies(XRayRequested, Diagnosed)
implies(NoXRayNeeded, Diagnosed)
implies(MedPrescribed(m), Diagnosed)
mutExcl(XRayRequested, NoXRayNeeded) }

The agent variables corresponding to debtor and creditor
prescribe that:

• if an agent a is assigned to the agent variable, a shall be
debtor (or creditor);

• if the agent variable is unassigned, any agent a’ can
be debtor (or creditor), and a’ is assigned to the agent
variable by participating in the commitment.

Example. In Table II, C1 is the only initial and final commit-
ment. The protocol has two agent variable parameters (pt and
sp), which are the debtor and the creditor of C1. When an
instance of the protocol is created, with agent frank assigned
to sp and agent mel assigned to pt, an instance c1 of C1 shall
be created with debtor frank and creditor mel. When c1 is
fulfilled (the patient is examined, then diagnosed, and finally
dehospitalized), the protocol instance terminates successfully.
If c1 is violated, the protocol terminates unsuccessfully. The
triggered commitment C2 is instantiated only if x-rays are not
needed, and it specifies that an or has to commit to sp to make
a sling. C4 shows strong commitments: a specialist commits
to assess the fracture only after x-rays have been performed.

Agent variables (2,4). We support agent variables that are
unassigned when the protocol is instantiated. They get assigned

when an instance of a commitment where they appear is
created, and, as an additional effect, the assigned agent adopts
the specified role in the protocol instance. Azzurra employs
assign-once variables: once an agent is assigned, no other agent
can be assigned to that variable.

Example. In Table II, there are agent variables for a rehab
centre, a radiologist, an orthopedist, a surgeon, and a nurse.
Actual agents will be assigned to these variables as the protocol
unfolds, i.e., when commitments are created. For example, an
orthopedist will be assigned to or as soon as an instance of C2

is created.

Commitment refinements (7). A deadline commits the debtor
to bring about the consequent within a certain time after the
antecedent occurs. The debtor can be authorized to delegate the
commitment, either retaining (can-deleg-ret-resp) or releasing
(can-deleg-no-resp) her responsibility. The creditor, similarly,
can be authorized to assign the commitment, either retain-
ing (can-assign-ret-cred) or releasing (can-assign-no-cred) her
credit. The debtor can be authorized to cancel her commitment
(can-cancel).

Example. In Table II, the radiologist can delegate instances of
C3, possibly to a colleague, without retaining responsibility.
Without such authorization, delegations would correspond to
a violation on part of the radiologist.

Protocol refinements (8). They constrain the agents that
participate in a protocol instance. The maximum number of
concurrent commitments for an agent playing a certain role can
be limited (max-per-role), as well as the number of instances
of a commitment class that an agent can make (max-of-class).
Role conflicts (role-confl) prescribe that an agent cannot play
two roles in the same protocol instance. Separation of duties
(sep-duties) implies that an agent cannot be debtor in instances
of two commitment classes, and it can be restricted to agents
playing a specific role (comm-role-confl).

Example. A role-confl refinement specifies that the same agent
cannot play both radiologist and orthopedist, because their
roles are incompatible in the same protocol instance.

Preconditions, propositions, and triggers (9–15). Azzurra
supports different types of preconditions (9) and propositions
types (10): atomic (atom), commitment states (cstate), proto-
col states (pstate), binary operators, and so on. The binary
operators (11) are conjunction (∧), disjunction (∨), exclusive
disjunction (⊕), and temporal precedence (·). Atomic proposi-
tions (15) can be truth (>), falsity (⊥), or states of affairs (e.g.
FractAssessed). States of affairs may be parametric and, thus,
have multiple instances. For example, MedPrescribed(med-id)
has an instance for each medication the patient is given. The
state of a protocol instance evolves because of the occurrence
of events (14), as they trigger new commitment instances and
change the state of existing commitment instances. Three event
types are supported:

• An atomic proposition becomes true. This includes the
occurrence of a state of affairs (e.g., the patient is diag-
nosed).

• The state of a commitment instance changes (see clause
(12) below).



TABLE I: EBNF syntax of Azzurra; terminals in bold, non-terminals in italics

prot→ protocol pid (params) { (1)
[ag-variables: vars]
commitments: comms crefn∗

[refinements: (id : refn)∗] [kb: domain+] } (2)
params→ key v, v : role (, v : role)+ (3)

vars→ v : role (, v : role)∗; (4)
comms→ (init � [≤time ] comm final;)+ (ev [[prec]] � [≤time ] comm;)∗ (5)
comm→ id : C[*](v, v, prop, prop) (6)
crefn → deadline(id, time) | can-deleg-ret-resp(id) | can-deleg-no-resp(id) |

can-assign-ret-cred(id) | can-assign-no-cred(id) | can-cancel(id) (7)
refn → max-per-role(role, nr) | max-of-class(role, id, nr) | role-confl(role, role)

comm-role-confl(role, id, id) | sep-duties(id, id) | (8)
prec→ atom | cstate | pstate | prec op prec | ¬prec | (prec) (9)
prop→ atom | cstate | pstate | prop op prop | (prop) (10)
op→ ∧ | ∨ | ⊕ | · (11)

cstate→ create(id) | deleg-no-resp(id [to v]) | deleg-ret-resp(id [to v]) | fulfil(id) |
cancel(id) | expire(id) | release(id) | assign-ret-cred(id [to v]) |
assign-no-cred(id [to v]) (12)

pstate→ init-p(pid (, v = v)∗) | fulfil-p(pid (, v = v)∗) (13)
ev → init | atom | cstate | pstate (14)

atom→ > | ⊥ | staffairs [(v (, v)∗)] (15)
domain→ implies(staffairs , staffairs) | mut-excl(staffairs(, staffairs)+) (16)

Orthopedist
RehabCenter

Specialist

Radiologist

Patient

Nurse

C2: SlingMade

C5: (Fixated XOR Plastered) 
OR (fulfill(C6) OR SlingMade)
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[XRayPerformed]

C6: Operated
[SurgeryRequested]

Surgeon

C3: XRayPerformed

C7: RcChosen(rc)
C9: MedApplied(m)

C1: Examined . 
Diagnosed . 

Dehospitalized 

C8: fulfill_p(RehabGiven)

Deb Cred
c_id:

commitment

Legend

Commitment

Initial
commitment

Final
commitment

c_id:
consequent
[antecedent]

Strong
commitment (C*)

c_id:
fulfill_p (ProName)

Commitment
for protocol

Fig. 1: Graphical representation for the Azzurra protocol in Table II

• The state of another protocol instance changes, i.e., it is
instantiated (init-p) or fulfilled (fulfil-p). Optionally, one
can specify constraints on the protocol instance parame-
ters, e.g., to impose a certain key or that a specific agent
in the current protocol instance shall be assigned to an
agent parameter in the referenced protocol.

Example. The consequent of C5 tells that the commitment is
fulfilled if either an instance of Fixated or Plastered occurs

(but not both), an instance of C6 is fulfilled, or an instance
of SlingMade occurs. The consequent of C8 indicates that a
successful instance of the protocol RehabGiven is expected,
with the constraints that the patient identifier parameter (pat-
id) corresponds to the patient in the instance of Treatment, and
that the reference specialist (ref-sp) is the specialist who is
responsible for the hospitalization of the considered patient.

Commitment states (12). Propositions and may denote that a



commitment is in or has changed to a specific state. Given a
commitment class id:

• create(id): an instance of id is created;
• deleg-no-resp(id [to v]): an instance of id is delegated (to

agent v) without retaining responsibility;
• deleg-ret-resp(id [to v]): an instance of id is delegated (to

v); the delegator keeps responsibility;
• fulfil(id): an instance of id is fulfilled;
• cancel(id): an instance of id is canceled;
• expire(id): an instance of id has expired;
• release(id): an instance of id is released;
• assign-ret-cred(id [to v]): an instance of id is assigned (to

v) retaining the credit;
• assign-no-cred(id [to v]): id is assigned, but the assignor

does not retain the credit.

Knowledge base (16). It specifies semantic relationships, i.e.,
implications and mutual exclusions, between states of affairs.
These relationships belong to the shared vocabulary of the
participants in a protocol.

Example. Three states of affairs imply a diagnosis: XRayRe-
quested, NoXRayNeeded, and MedPrescribed. XRayRe-
quested is mutually exclusive with NoXRayNeeded.

IV. RUNTIME COMPLIANCE WITH AZZURRA PROTOCOLS

The semantics of Azzurra specifications enables determin-
ing whether the actors participating in a protocol instance
are compliant with the specification. We assume that the
messages that the actors exchange within the context of pro-
tocol execution are observable by a monitoring infrastructure.
Compliance checking compares the observed behavior from
occurred events and the expected behavior as indicated by the
protocol specifications. We present two algorithms that enable
determining compliance:

1) Algorithm 1 (ENACTPROTOCOLS) determines how an
event updates the state of existing protocol instances
and of the commitment instances therein. We call this
activity enactment of a protocol. The output constitutes
the expected behavior.

2) Algorithm 2 (CHECKCOMPLIANCE) checks whether an
occurred event violates the specification of a protocol in-
stance. This corresponds to verifying if expected commit-
ments are not created/fulfilled, if disallowed commitment
operations are performed, and if protocol constraints (e.g.,
maximum roles per agent) are violated.

In our algorithms, we assume that the occurring events
are associated with a specific protocol instance (there is no
ambiguity about which protocol instance they refer to). Events
are processed sequentially by dequeuing a first-in first-out
queue of events. When the algorithms invoke the ENQUEUE
function, an event is added to such queue.

Algorithm 1 enacts a set of protocol instances and the
commitments therein contained. The algorithm depends on the
type of the processed event ev:

• Protocol instantiation (lines 1–6): a new protocol instance
is created (class, key, and arguments are taken from the

Algorithm 1 Enacting protocol instances based on an occurred
event
ENACTPROTOCOLS(Event ev, ProtInst [ ] P)

1 if ev = init-p(p-id, key, par1 = ag1, . . . , parn = agn)
2 then p← CREATEPROTINSTANCE(p-id, key, ag1, . . . , agn)
3 P.ADD(p)
4 for each init �≤t Ci : C(Db,Cd,Ant,Cons) ∈ p.spec
5 do p.ADDCOMMI(Ci, p.VALOF(Db), p.VALOF(Cd),
6 Ant,Cons, NOW + t, NIL)
7 ProtInst p← GETPROTINSTFOREVENT(ev)
8 if Ev[Prec] �≤t Ci : C(Db,Cd,Ant,Cons) ∈ p.spec ∧
9 p.kb ` prec(p.key)

10 then p.ADDCOMMI(Ci, p.VALOF(Db), p.VALOF(Cd),
11 Ant,Cons, NOW + t, ev.args)
12 if ev = create(db, cd, c)
13 then p.ADDCOMMINSTANCE(c)
14 CommClass cc← p.CLASSOF(c)
15 if p.VALOF(cc.deb) = NIL then p.ASSIGN(cc.deb, db)
16 if p.VALOF(cc.cred) = NIL then p.ASSIGN(cc.cred, cd)
17 if ev = cancel(db, cd, c) ∧ c ∈ p then p.REMOVE(c)
18 if ev = release(cd, db, c) ∧ c ∈ p then p.REMOVE(c)
19 if ev = deleg-no-resp(db, db2, c) ∧ c ∈ p then c.db← db2
20 if ev = deleg-ret-resp(db, db2, c) ∧ c ∈ p
21 then p.ADDCOMMI(c.id, db2, c.cd, c.ant, c.cons, c.args)
22 if ev = assign-no-cred(cd, cd2, c) ∧ c ∈ p then cj.cd← cd2
23 if ev = assign-ret-cred(cd, cd2, c) ∧ c ∈ p
24 then p.ADDCOMMI(c.id, c.db, cd2, c.ant, c.cons, c.args)
25 for each CommInst c ∈ p
26 do c = RESIDUATEANTCONS(c, ev)
27 if c.state = fulfilled then ENQUEUE(fulfill(c))
28 if ∃c ∈ p.finalcomminsts s.t. fulfill(c) ∈ evts
29 then for each CommInst cj ∈ p do release(cj.db, cj.id)
30 p.state← fulfilled
31 ENQUEUE(fulfill-p(p.id, p.key))
32 if ∀c ∈ p.finalcomminsts . c.state = violated
33 then for each CommInst cj ∈ p do release(cj.db, cj.id)
34 p.state← failed
35 ENQUEUE(failure-p(p.id, p.key))
36 ENQUEUEALL(GETIMPLIEDFROM(p.spec, ev))

event), and added to the protocol instances P (lines 1–3).
An instance of every initial commitment in the protocol
specification is created (lines 4–6): debtor and creditor
are set by retrieving the agents that are assigned to the
agent variables in the commitment class. If specified, a
creation deadline is set by adding the creation timeout to
the current time (NOW). The following events types refer
to the protocol instance that relates to the event (line 7).

• Commitment trigger (lines 8–11): commitment instances
are created whenever an instance of the trigger event
occurs, if the optional precondition holds (the knowledge
base of the protocol instance, inferred from all occurred
events, entails it).

• Commitment creation (lines 12–16): the commitment in-
stance is added to the protocol instance (line 13). If
the agent variables for the debtor and the creditor of
the corresponding commitment class are still unassigned,
their value is assigned to the debtor and the creditor of
the commitment instance (lines 14–16).

• Commitment updates (lines 17–24): cancel and release
operations imply the removal of the commitment instance
from the protocol (lines 17–18). Delegation without re-
taining responsibility transfers the responsibility to an-
other debtor (line 19), while delegation with retaining re-
sponsibility creates a second commitment instance (lines
20–21). Assignments of credit are treated similarly (lines
22–24).



The antecedent and consequent of commitment instances in the
protocol instance are residuated [27]: they are updated based
on the fact that a new event has occurred (lines 25–27). If a
commitment’s consequent is ‘p · q’, and event ‘p’ occurs, the
consequent becomes ‘q’. If ‘q’ occurs before ‘p’, the status
of the commitment switches to violated. If a commitment is
fulfilled, a corresponding event is enqueued.

Lines 28–36 handle protocol termination. Success (lines
28–31) occurs if a final commitment is fulfilled: active com-
mitment instances are released, the protocol instance is set to
fulfilled, and a corresponding event is enqueued. Failure (lines
32–35) occurs if all final commitment instances are violated.
Finally, all the events that are implied from the ev via implies
relationships are enqueued for processing (line 36).

Algorithm 2 Checking compliance with a protocol instance
CHECKCOMPLIANCE(Event ev, ProtInst p)

1 ProtSpec sp← p.spec
2 if mut-excl(Sti,Ev) ∈ sp ∧ sti(p.key) ∈ p.kb
3 then ERROR(p,mut-excl(sti, ev))
4 for each CommInst c ∈ p
5 do if NOW > c.creatDeadline ∧ !c.created
6 then ERROR(p, create-timeout(c))
7 if NOW > c.fulfilDeadline ∧ !c.fulfilled
8 then ERROR(p, fulfill-timeout(c))
9 if ev = deleg-ret-resp(db1, db2, c) ∧ !c.canDelRet

10 then ERROR(p, del-ret(c))
11 if ev = deleg-no-resp(db1, db2, c) ∧ !c.canDelNoR
12 then ERROR(p, del-no-r(c))
13 if ev = assign-ret-cred(cd1, cd2, c) ∧ !c.canAssgnR
14 then ERROR(p, assign-ret(c))
15 if ev = assign-no-cred(cd1, cd2, c) ∧ !c.canAssgnNoC
16 then ERROR(p, assign-no-r(c))
17 if ev = cancel(db, c) ∧ !c.canCancel then ERROR(p, cancel(c))
18 if ev = create(db, cd, c)
19 then CommClass cc← p.CLASSOF(c)
20 if NIL 6= p.VALOF(cc.deb) 6= db
21 then ERROR(p,wrong-deb(c, db))
22 if NIL 6= p.VALOF(cc.cred) 6= cd
23 then ERROR(p,wrong-cred(c, cd))
24 for each AgentVar agv ∈ p.agent-vars
25 do Role rl← agv.role
26 Agent ag← p.GETASSIGNEDAGENT(agv)
27 if ag = NIL then break
28 if max-per-role(rl, n) ∈ sp ∧ |p.COMMWITHDEB(ag)| > n
29 then ERROR(p,max-per-role(ag, rl))
30 for each CommClass cc ∈ sp.comms
31 do if max-of-class(rl, cc.id, n) ∈ sp ∧
32 |p.COMMOFTYPEWITHDEB(cc, ag)| > X
33 then ERROR(p,max-of-class(ag, rl, cc.id,X))
34 if role-confl(rl, rl2) ∈ sp ∧ p.PLAYS(ag, rl2)
35 then ERROR(p, role-confl(ag, rl, rl2))
36 if comm-role-confl(rl,C1,C2) ∈ sp ∧
37 p.PLAYS(ag, rl2) ∧ p.DEBFORBOTH(ag,C1,C2)
38 then ERROR(p, comm-role-confl(ag, rl,C1,C2))
39 for each ag ∈ p.GETALLPARTICIPANTS()
40 do if sep-duties(C1,C2) ∈ sp ∧ p.DEBFORBOTH(ag,C1,C2)
41 then ERROR(p, sep-duties(ag,C1,C2))

Algorithm 2 raises errors whenever an event violates a
constraint in the specification of a protocol instance. Lines
2–3 handle mutual exclusion constraints (mut-excl): if the
occurred event happens, and the knowledge base entails a
conflicting state of affairs, an error is raised. Lines 4–23
examine all commitment instances, and raise errors when
different commitment constraints are violated: expired cre-
ation deadline (≤ t), expired fulfillment deadline (deadline),
disallowed delegation with retained responsibility (deleg-ret-

resp), disallowed delegation without responsibility (deleg-no-
resp), disallowed assignment retaining credit (assign-ret-cred),
disallowed assignment without credit retainment (assign-no-
cred), and disallowed cancellation (cancel). Lines 18–23 raise
errors if the event is the creation of a commitment, but the
debtor or the creditor is not the expected one. For instance, if a
commitment class has debtor agent variable agv1, agent “john”
is already assigned to agv1, and a commitment instance for that
class is created with debtor “mike”, an error is raised. Lines
24–41 detect violations of protocol refinement constraints, such
as max-per-role and sep-duties.

V. IMPLEMENTATION

As a proof of concept, we implemented two prototypes
that enable creating Azzurra textual and diagrammatic specifi-
cations (Section V-A), and the compliance checking algorithms
that are used at runtime (Section V-B).

A. Modeling Tool

The Azzurra modeling tool is a standalone Eclipse appli-
cation, built on top of the GEF (Graphical Editing Frame-
work) and XText frameworks. The environment supports the
modeling of business processes in terms of views that allows
the modeler to focus on different aspects of the domain and,
thus enables a better separation and representation of concerns
during modeling time.

The social view (depicted in Fig. 2a) provides an intuitive
interface for the modeler, by enabling designers to graphi-
cally represent the social relations among the several roles
and agents, in terms of their commitments and commitment
delegations. Using the Properties tab (below the graphical
representation), it is possible to specify commitment’s name,
antecendent, consequent, triggering event and deadline. Fur-
ther, one can also specify whether a given commitment is an
initial, final or strong commitment.

The protocol view (textual view) also enables designers
to enrich the specification by capturing other details like
triggering events for commitments as well as commitment
refinements and parts of the knowledge base of the protocol
(depicted in Fig. 2b). Commitment refinements can be captured
either by editing the Properties tab or by editing the textual
protocol representation as depicted in Fig. 2b. Finally, the
tool also enhances the modeling process by enabling the
checking of well-formed Azzurra models, detecting invalid
commitments and commitment delegations at modeling-time.

B. Algorithms Implementation and Performance Evaluation

The compliance checking algorithms have been imple-
mented in a prototype Java tool that uses the Drools rule
engine to draw inferences and determine which are the active
commitments, and whether the agents are acting in compliance
with the specification. The tool takes as input a trace of events,
and processes it using Algorithm 1 and Algorithm 2 to interpret
exchanged messages in terms of protocols and commitments.
Whenever an event is read and processed, the tool updates
the internal data structures that are stored as Json objects in
a MongoDB database. The tool supports multiple protocol
classes; in order to add one protocol to the database, a text
file is creating following the syntax in Table II, which can



(a) Social view (graphical representation) (b) Protocol view (textual representation)

Fig. 2: Views of fracture treatment scenario (Fig. 1) using the Azzurra modeling language

be exported from the modeling environment shown in Fig. 2a
and Fig. 2b. The tool uses a parser—generated with Antlr—to
populate the database.

We have conducted preliminary tests on the performance of
our runtime tool. The results have shown that performance is
not affected by the number of events processes so far (hence,
by the number of active commitment instances); it takes just
a handful of milliseconds (between 5 and 100) to process an
event. On the other hand, protocol instantiation events affect
significantly the performance of the tool, for they require in-
stantiating the protocol itself, its initial commitments, binding
agents to variables, initializing constraints, etc., through the
creation of a number of Json objects and their storage in the
database. On average, it takes a few seconds (5 to 10) to
instantiate a protocol like that in Table II.

The runtime tool and its performance evaluation are too
preliminary to draw any conclusions on the scalability of the
framework. This is part of our current and future work.

VI. EVALUATION ON SCENARIOS

We conducted a preliminary evaluation of Azzurra’s ap-
plicability by modeling two scenarios that have been extracted
from two different real-world cases within the medical domain,
followed by a general discussion on Azzurra. The healthcare
domain has been selected due to the recognition of one of the
most promising, but still challenging domains for the adoption
of process-oriented solutions due to complex needs stemming
from the business domain [11].

The first scenario (Section VI-A) compares Azzurra’s
representational features to those of the three main types
of process modeling languages: (activity-centered) imperative,
(activity-centered) declarative and (artifact-centered) declara-
tive modeling languages, see Section VII for details. Therefore,
we have selected the most prominent representative of each
category to establish our comparison. Our goal is to demon-
strate in which aspects Azzurra conceptualization differs from
the other representational methods.

The second scenario (Section VI-B), on the other hand,
emphasizes certain domain characteristics of the scenario that

could be better supported by a commitment-based represen-
tation. For that, we depict imperative process models as a
means of presenting these domain characteristics and then,
contrast the imperative representation with the corresponding
commitment-based representation.

A. Fracture Treatment Scenario

In this first scenario, we present alternative models of the
fracture treatment example from the literature [31], and com-
pare them with the Azzurra model presented earlier (Fig. 1).

Fig. 3(a) depicts an operational model for the running
example using the BPMN modeling language. Imperative
languages represent business processes in terms of activities
to be executed as well as the exact sequence between these
activities. Here, the model consists of activities (e.g., “Examine
patient” and “Verify need of medication”) and the control
flow among them. Since activities must be explicitly activated
for enactment, this type of representation requires an explicit
(. . . and exhaustive) specification of all possible enactment
paths. For instance, a recurrent enactment path for our example
is “Examine patient” and then “Verify need of medication”, but
there are many others as well (not represented in Fig. 3(a)).
Azzurra models enable more flexible specifications of process
models because it only requires the specification of essential
ordering constraints between commitments. For instance, in
Table II and Fig. 1, only C1, C4 and C6 include temporal con-
straints. Further, as commitments can be satisfied by different
activities, the “Examine patient” commitment could be fulfilled
through different operationalizations as for instance, the doctor
could first “Perform a physical evaluation” and subsequently
“Examine patient’s family history” or alternatively, s/he could
perform the same activities in the inverse order.

Unlike imperative languages, declarative ones require only
the minimal set of constraints between activities. By default,
all execution paths are allowed and prohibited execution
paths are specified by constraints on the execution order
between activities. Fig. 3(b) (extracted from [31]) presents
the declarative specification of our running example using
DECLARE. Azzurra is also declarative like DECLARE, but it
does not focus on activities for expressing business processes,
rather emphasizing their social nature by capturing agents
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Fig. 6 Defining the optional response constraint

the treatments can be given in any combination and each pa-
tient receives at least one treatment (1 of 4 constraint). Ad-
ditional diagnosis (X-ray) is not necessary when the special-
ist diagnoses the absence of a fracture during examination.
Without this additional diagnosis, the patient can only re-
ceive the sling treatment. All other treatments require X-ray
to rule out the presence of a fracture, or to decide how to
treat the fracture (constraint precedence). Simple fractures
can be treated just by cast. For unstable fractures activity fix-
ation may be preferred over activity cast. For patients who
undergo surgery the specialist is advised to execute activ-
ity rehabilitation afterwards (optional constraint response).
Moreover, the specialist can provide medication, e.g., pain
killers or anticoagulants, at any stage of the treatment. Also
additional examinations and X-rays can be done during the
treatment.

Note that init, precedence, 1 of 4, and not co-existence
refer to constraint templates whose semantics are ex-
pressed in terms of LTL. Table 1 shows the relation be-
tween the constraints shown in Fig. 5, the constraint tem-
plates, and LTL. The process should start with exam-
ination. This constraint is specified using the init tem-
plate. Table 1 shows its definition: init(A) = A. Therefore,
init(examination) = examination. Note that in LTL-terms
this means that examination should be the current (i.e.,
first) action. The precedence constraint template is de-

Template formula Constraint LTL expression
init(A) = A init examination
precedence(A, B) = (!B) W A precedence (!(surgery ∨fixation ∨cast) W X-ray
response(A, B) = !(A ⇒ ("B)) response !(surgery ⇒ ("rehabilitation))
1o f 4(A, B, C, D) = "(A ∨ B ∨C ∨ D) 1 of 4 "(surgery ∨fixation∨cast ∨ sling)
not coexistence(A, B) =!(("A)∧ ("B)) not-coexistence !(("fixation)∧ ("cast))

Table 1 LTL expressions for
constraints in Fig. 5

fined by the LTL formula precedence(A, B) = (!B) W A,
i.e., B should not happen before A has happened. Note
that W is a temporal operator similar to $ (until). The
“weak until” operator W in “(!B) W A” says that A does
not have to happen if B never happens. In Fig. 5, the
precedence constraint template is used with three B’s, i.e.,
(!(surgery∨ fixation∨ cast) W X-ray defines the semantics
of this particular constraint). This means that the treat-
ments surgery, fixation, and cast all require X-ray to rule
out the presence of a fracture. However, X-ray is not
needed if none of the treatment activities (surgery, fixa-
tion, and cast) occurs. Table 1 also defines the 1 of 4 and
not co-existence constraints. 1 of 4(A, B, C, D) = !(A ∨
B ∨ C ∨ D) means that eventually (!) at least one of
the four activities should occur. not coexistence(A, B) =
!((!A)∧ (!B)) means that it cannot (!) be the case that
eventually A occurs (!A) and that eventually B occurs
(!B).

The process defined by Fig. 5 allows for many execu-
tion paths. Unlike imperative languages, there is no need
to include these execution paths explicitly. For example,
the mutual exclusion constraint between cast and fixation
is difficult to express in imperative languages, especially
since the moment of choice between these two treatments
is not fixed. In an imperative language one would need
to decide on the moment of choice, specify the loop be-
havior, and determine the people making these choices. In
Declare one can simply use the not-coexistence constraint
with an intuitive graphical notation. In declarative languages
only the rules that constrain the behavior need to be speci-
fied. Therefore, there is no need to enumerate the execution
paths.

Constraint response between activities surgery and reha-
bilitation is optional as shown by the dashed arrow in Fig. 5.
Figure 6 shows the definition of the constraint that is using
the response template. Note that for optional constraints
a level and a warning message can be defined. In this par-
ticular case a warning of level “5” is generated when the
user is about to violate the constraint.

Figure 7 shows the Worklist component containing two
active instances (active instances are presented in the list
on the left-hand side of the screen). After executing activity
examination, the user is currently executing activity medica-
tion for the second process instance. Activities examination,
X-ray, and medication are enabled, i.e., can be executed. Ac-
tivities surgery, fixation, and cast are disabled, i.e., cannot
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Fig. 3: Snippets of the fracture treatment process using (a) a operational workflow language; (b) a declarative language; (c) an
artifact-centered notation

and commitments between them. The approach of modeling
business processes in terms of commitments among process
participants also increases flexibility in the specification as in
the imperative paradigm, once it does not constrain process
participants to execute particular activities during runtime, but
instead, it expands the number of operational choices as long
as these activities satisfies the commitments among agents.

Differently from its activity-centered cousins, the artifact-
centered paradigm promotes data objects to first-class citizens
in modeling a process, by describing the lifecycle of each
object. Here, activities that change/update the state of an object
are also represented. In our example, fracture treatment is
represented as a data object called “Patient” with several inter-
connected states. The control flow of the business process does
not have to be exhaustively modelled, relying instead on the
lifecycle model of the data objects: “registered”, “examined”,
. . . , “dehospitalized” (see Fig. 3(c)). The states of the data
object are similar to the propositions in the Azzurra version of
the process (e.g., “examined”, “diagnosed” in Table II). How-
ever, by centering the representation on artifacts, the business
process has an operational perspective. Differently, Azzurra’s
commitment-based representation highlights the social nature
of business processes, representing who is responsible for
advancing the state (the debtor in a commitment). Further,
while the artifact-centered paradigm focuses on the activities
that change the states of data objects, Azzurra focuses on cor-
rectness criteria rather than specific operationalizations. This
approach favors flexibility as different activities are admissible
at runtime, as long as they satisfy the correctness criteria
stipulated by the commitments.

B. Clinical Guidelines Scenario

In our second scenario, we also consider a business process
from the medical domain that concerns Clinical Guidelines
(CGs). CGs consists of “systematically developed statements
to assist practitioner and patient decisions about appropriate
health care for specific clinical circumstances” [15]. In the
context of a CG, every activity in the process model corre-
sponds to a recommendation that support healthcare providers
(doctors, nurses, etc.) to develop care actions for patients.
Therefore, every activity within the process model can be
understood as an abstract recommendation (abstract activity)
to be adapted at runtime according to a specific patient by the
healthcare provider executing the CG. Given the abstract nature
of CGs that require extensive adaptation of abstract activities
at runtime, we say that CGs are inherently decision-intensive
business processes.

Figure 4(a) depicts an example of an executable clinical
guideline for transient ischemic attack (TIA) (an episode of
neurological occurrence) from the literature [33], [36]. The CG
is represented in terms of activities for each recommendation
and executing constraints between these activities using the
BPMN notation. To exemplify the decision-intensive nature of
a CG, consider the “Treat for stroke” recommendation/activity.
During process execution, this recommendation has to be
personalized for a specific patient, considering (i) the execution
context (ii) doctor’s expertise and (iii) patient’s clinical circum-
stances. For instance, assuming that there are two procedures
for treating stroke (“surgery” and “endovascular procedure”),
the doctor has to select the best alternative for the patient by
considering environmental constraints, such as the availability
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of procedures and/or costs of each of them.

Most of the languages for representing CGs follow a task-
based paradigm in which recommendations are represented
as actions and decisions in a rigid flowchart-like (imperative)
structure [11], like the BPMN representation in Figure 4(a).
However, adopting this approach indeed introduces a number
of shortcomings in the CG representation from a domain
point of view, that are required by imperative process lan-
guages, like inexistent ordering constraints between multiple
recommendations. Although it is out of scope of this paper
to provide a more extensive discussion about the topic of
CG representation, our intention here is to demonstrate how
a commitment-based approach could help to tackle some of
the problems with the imperative representation. For that,
we introduce in Figure 4(b) the respective commitment-based
representation of Figure 4(a). While activities in CGs represent
recommendations for healthcare providers on how to address
particular clinical circumstances, commitments instead capture
these recommendations as a compromises of the healthcare
provider who is executing the guideline towards the patient
(and also the compromises of other healthcare providers in
the scope of the guideline).

In the remainder, we point out some of the shortcomings
introduced by imperative languages and contrast the corre-
sponding representation with the Azzurra model:

• Negative recommendations: Imperative process models
(Figure 4(a)) describe recommendations like “Treat for
stroke” and “Apply FAST on patient” as activities. This
approach works well for positive recommendations, i.e.,
actions that have to be performed. Differently, for negative

recommendations as “Do not provide aspirin” (which is
admissible from a business perspective [36]), the activity-
based representation fails. Indeed, the existence of nega-
tive recommendations suggest that recommendations are
not actions themselves, but rather positive and negative
restrictions on the behavior (actions). By centering the
representation on commitments, Azzurra specifies restric-
tions on behavior, defining correctness criteria that should
not be violated. In this case, the issue with negative rec-
ommendations can be solved by specifying a commitment
whose consequent in a negative correctness criteria (for
example, ¬AspirinProvided);

• Ordering constraints: As the imperative representation
represents recommendations as actions that have to be
performed (and actions are represented in sequence within
the imperative paradigm), the paradigm imposes a natural
sequence among these recommendations. From a domain
perspective, however, ordering constraints among recom-
mendations are not necessary or even desirable [36] (this
lack of sequence can be indeed evidenced by the existence
of negative recommendations). Differently, Azzurra does
not impose any order among commitments, but when nec-
essary, they can be specified by matching commitments
consequent and antecedent;

• Conflicting recommendations: in the imperative represen-
tation, recommendations are modeled as labeled activities
(textual information) and no mechanisms are specified to
correlate related actions (for instance, “Provide aspirin”
and “Do not provide aspirin” are modeled as unrelated
actions in the specification). As a consequence of that,
external rules must be defined to capture conflicting
actions, whereas automatic detection could be performed



by reasoning over the meaning of the actions [36]. In
a commitment-based approach, as commitment’s con-
sequent capture recommendations (for instance, for a
recommendation “Provide aspirin”, the commitment con-
sequent is AspirinProvided), conflicting recommenda-
tions could be automatically detected. For instance, in
a hypotethical situation in which aspirin conflicts with
clopidogrel, the knowledge base could capture this con-
flict as a rule and design-time model-checking techniques
could be applied to reason about conflicting commit-
ments (for example, two commitments whose consequent
are AspirinProvided and ClopidogrelProvided cannot
exist in the same Azzurra specification). Alternatively,
other conflicting recommendations could also be detected,
like “Provide aspirin” (AspirinProvided) and “Do not
provide aspirin” (¬AspirinProvided).

• Compliance checking: As a guideline specification is
intended to provide recommendations for healthcare
providers to execute actions, from a practical point of
view, they have freedom to either change the suggested
care actions (i.e., change the actions that satisfy a given
recommendation/commitment) or even to completely skip
certain recommendations when necessary. However, com-
pliance to guidelines is assessed in a strict manner by
only matching recommended actions with executed ac-
tions [29]. This means that, although they are free to select
the best care actions at runtime, substitutions in the rec-
ommendations will accuse false cases of non-compliance.
Azzurra leverages compliance to the business level, by
not specifying concrete actions to be executed, but rather
correctness criteria. This opens the possibility of using
alternative actions to fulfill the commitment (depending
how suitable they are in relation to the executing context),
as long as they satisfy the commitments. Furthermore,
by capturing actors and their commitments, accountability
can be easily checked in an Azzurra specification. This is
also fundamental in a medical context, once responsibility
for care actions need to be strictly tracked along the
treatment process.

C. Discussion

The fracture treatment scenario shows how Azzura natively
supports modeling business processes in the healthcare do-
main; this style of modeling has advantages in other domains
too. Unlike current languages, that center their representation
either in activities or data objects, Azzurra captures the social
nature of the interactions between process participants by
expressing these interactions in terms of commitments (cor-
rectness criteria based on social expectations). Centering the
representation in terms of activities/data objects leads to an
operational business process representation, once the behavior
is specified in terms of specific operationalizations to achieve
the desired outcomes, rather than what is supposed to be
achieved. As a general consequence of the shift in the represen-
tation, specifications in Azzurra allow one to capture business
processes in more strategic terms. In particular, the benefits
of such approach in the first scenario can be manifested as
(i) the ability of focusing on the social perspective of the
business processes, (ii) it enables a more flexible representation
of the process than its respective counterparts in other process
languages. This flexibility is manifested through the ability

of specifying different sequences of commitments that can be
satisfied by different concrete activities.

While in the first scenario Azzurra provides increased
flexibility for business process specification, the second sce-
nario demonstrates that a shift in the modeling paradigm
is rather fundamental to address the representational needs
(knowledge structure) of clinical guidelines. To enumerate the
CG flexibility needs more concretely, guidelines are inher-
ently decision-intensive and act as abstract templates/blueprints
that provide evidence-based decision support for healthcare
providers. They do not prescribe the actual behavior within
the business process, but rather constraints on the behavior and
require subsequent adaptation and personalization to obtain a
concrete medical treatment (actions) for a given patient [11].
As a result, it is not possible to define a priori all the
variants in the execution of a business process (imperative
modeling would require doing so). Azzurra, on the other hand,
represents these guidelines through correctness criteria in terms
of commitments.

In summary, Azzurra better supports not only the repre-
sentation of the knowledge structure of the domain (by being
able of representing negative recommendations as well as the
essential ordering constraints), but also presents an advantage
for the reasoning techniques that must be executed on the basis
of CG models, as reasoning about conflicting recommendations
and checking compliance. More specifically, considering com-
pliance checking, Azzurra expands the notion of compliance
to the business level, once correctness criteria allows one to
consider different actions that satisfy commitments and not to
necessarily stick to one particular activity as it is done in the
current practice. Moreover, relying on commitments between
agents, Azzurra natively supports accountability, i.e., enables
determining at all times which agents are compliant, and which
ones have violated a commitment they are responsible for.

VII. RELATED WORK

Proposals targeting the representation of distributed be-
havior among agents are mainly stemmed from the Business
Process Management (BPM) area within the umbrella of
business process modeling languages. Historically, Petri Nets
were probably the first formalism to treat concurrency as first-
class citizen [32]. Despite the availability of well-established
formalisms like Petri Nets and process calculi, industry needs
pushed the adoption of a plethora of conceptual languages
like BPMN, BPEL, UML, EPCs, workflow nets, etc [32].
The majority of conceptual process modeling languages model
business processes within an imperative paradigm which is
basically founded on the notions of activities and control flows
among them. Such languages are intended to define operational
details to better support process execution and work well for
structured and repetitive business processes.

The rigidity imposed by the imperative paradigm that
requires exhaustive specification of all possible paths during
design-time triggered efforts for the development of declarative
languages. In this context, declarative workflows [31] have
arisen as a alternative for providing more flexible specifica-
tions of business processes, by enabling the representation of
behavior in terms of minimal precedence constraints among
activities.



The realization that the primary driver for the progress of
certain types of business processes is not the event related
to the completion of activities, but instead the availability
of certain values of data objects [22] led to the creation
of the artifact-centered paradigm. This paradigm proposes a
hybrid approach for the representation of business processes,
by capturing them in terms of activities and artifacts (data
objects). More specifically, Bhattacharya et al. [4] make
artifacts such as purchase orders, invoices, etc., as the focus of
business process modeling, and define workflows that represent
the lifecycle of these artifacts.

Process modeling languages as well as novel paradigms
such as declarative and artifact-centered approaches originate
from technical requirements concerning process execution
(e.g., the introduction of the declarative paradigm motivated
by the issue of ordering constraints imposed by the imperative
paradigm). Differently, Azzurra is motivated by need of pro-
viding a social perspective of business process representation,
by capturing these business processes in terms of intentional
agents and the expectations of these agents towards each other,
i.e., their commitments. As a result, instead of expressing how
to achieve a determined business goal through a prescription of
a number of steps (activities), Azzurra specifies the constraints
that have to be respected and gives the participating agents the
autonomy to decide the best operationalizations to achieve the
outcomes during runtime. This shift in the modeling paradigm
opens up the possibility of providing more flexible specifica-
tions for business processes as demonstrated in Section VI-C.

Still in the area of BPM, a number of approaches are
also related to Azzurra in different ways. First, as Azzurra
represents autonomous agents and their interactions through
commitments and protocols, choreographies are also a related
approach as it specifies the flow of messages among au-
tonomous actors. Van der Aalst [30] advocates choreographies
for modeling cross-organizational business processes. Khalaf
[18] shows how to map the RosettaNet PIPs business pro-
tocols to abstract BPEL processes. Decker et al. [8] extend
BPEL with choreography-related constructs. WS-CDL [34]
and BPMN 2.0 both support the specification of choreogra-
phies. Benatallah et al. [3] propose a transition-based conversa-
tion model to conceptualize web service conversations. Unlike
choreographies, Azzurra captures the meaning of interaction
in terms of commitments among actors.

As commitments are triggered by events in Azzurra, event-
driven business chains [17] also constitute an alternative to
activity-based processes, by centering on events that trigger
functions performed by organizational units. Our approach
considers high-level events that update the commitments of
actors.

By centering on autonomous actors that interact to perform
a business process, social and resource management perspec-
tives in BPM also present some similarities with Azzurra.
Cabanillas et al. [6] introduces the Resource Assignment Lan-
guage (RAL). The RAL language (which has a formal seman-
tics based on Description Logics) extends the BPMN language
with RAL expressions in order to provide mechanisms for
history-based human resources management within business
processes. Similarly, Brambilla et al. [5] also extend the BPMN
notation for capturing social requirements, by including new
events and task types together with some annotations for

pools and lanes. Differently from both proposals that extend
BPMN notation with human resource constructs, Azzurra
indeed proposes the representation of business processes in
terms of commitments among actors.

As commitments carry a contractual meaning from the
social point of view, compliance management approaches in
BPM have also been investigated. In that respect, Ghose and
Koliadis [14] annotate business processes with constraints on
their execution in order to define normative compliance. Sadiq
et al. [25] enrich business process models with obligations
that members of an enterprise must fulfill in order to remain
compliant. While a commitment is a social relation between
actors, these obligations are technical constraints on informa-
tion system design.

In other areas the topic of commitments have also been
largely explored. In cooperative work, commitments constitute
the main abstraction in the influential Coordinator system [13],
intended to track activities within an organization. This work
inspires our approach. However, the Coordinator adopts an
operational view of conversations, which is less flexible than
the commitment protocols proposed here.

Commitments are also an important abstraction in the
design of multi-agent systems for specifying and analyzing the
interactions between several autonomous agents. As Azzurra,
Desai et al. [10] and Yolum [35] use commitments and
protocols as design abstractions for business processes. These
works inspire the REGULA framework [19], which introduces
temporal operators to represent more expressive commitments
and reasoning about them. A number of works also use
commitments for specifying cross-organizational business pro-
cesses. In [9], Desai at al. describe the Amoeba methodology
for specifying business processes based on business protocols.
Robinson and Purao [23] propose a framework for specifying
and monitoring cross-organizational business processes that
relies upon commitments enriched with a temporal logic.
Nandi and Sanz [20] employ sets of commitments as cross-
organizational contracts that lead to value creation. Azzurra’s
novelty compared to this work includes: (i) advanced prim-
itives for expressing business patterns such as separation of
duties, compensations, workload limits; also lifetime support
for protocol instances, from initiation to termination; (ii) a
graphical notation to visualize the main elements of a protocol;
and (iii) algorithms for determining compliance of observed
behavior with a specification.

VIII. CONCLUSION

We have presented Azzurra, a specification language for
business processes founded on the concept of social commit-
ment. Azzurra comprises business primitives that focus on the
obligations process participants have towards each other, rather
than on activities to be carried out, as well as delegations, dead-
lines, and role adoption constraints. In addition to syntax and
semantics for Azzurra, we have proposed a graphical notation
to visualize the main elements of an Azzurra specification, and
algorithms for checking whether the interactions among a set
of actors comply with a protocol specification.

This paper opens the door to further work on social
models for business processes. We plan to continue research
on Azzurra with work that (i) develops an enactment engine



that supports remedies to noncompliance; (ii) conducts an
empirical evaluation of Azzurra with industrial case studies;
(iii) improves the graphical notation; (iv) investigates the
joint usage of Azzurra specifications and operational business
process models (written, for example, in BPMN) and with
business artifacts; and (v) analyze the derivation of Azzurra
protocols from organizational goals.
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[17] G. Keller, M. Nüttgens, and A.-W. Scheer, “Semantische Prozessmodel-
lierung auf der Grundlage ”Ereignisgesteuerter Prozessketten (EPK)”,”
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