
Testing Decision Procedures for Security-by-Contract:
Extended Abstract∗

Nataliia Bielova Fabio Massacci Ida Siahaan
Universit́a di Trento, Italy

name.surname@disi.unitn.it

Abstract

The traditional realm of formal methods is off-line verification of formal properties of hardware and
software. We report a different approach that uses formal methods (namely the integration of automata
modulo theory with decision procedures) on-the-fly, at the time an application is downloaded on a
mobile application such as PDA or a smart phone.

The idea behind security-by-contract is that a mobile applications comes equipped with a signed
contract describing the security relevant behavior of the application and such contract should be matched
against the mobile platform policy. Both specified as automata modulo theories and the operation is an
on-the-fly emptiness test where edges are not only finite states of labels, but rather expressions which
capture infinite transitions such as “connect only to urls starting with https://”.

We will talk about prototype implementation, its integration with a state of the art decision solver
(based on MathSAT and NuSMV) and the preliminary experiments for contract-policy matching.

1 Prototype Implementation

We implemented language inclusion as on-the-fly emptiness test a-la-SPIN with oracle calls to the de-
cision procedures available in NuSMV [1]. Therefore, our design decision of automata modulo theories
AMT makes reasoning about infinite transitions systems with finite states possible without symbolic ma-
nipulation procedures of zones and regions, or finite representation by equivalence classes whose memory
intensive characteristic is not suitable for our application.

Our final objective is to do a run-time matching of the mobile’s platform policy (calledpolicy) against
the midlet’s security claims (calledcontract) expressed asAMT . First, we implemented the contract-
matching prototype in Java for Desktop version. Then, we ported the prototype into .NET on an HTC
P3600 (3G PDA phone). We made experiments on both implementations to see the feasibility and to
select the best design alternative.

Our algorithm checks whether or not thecontract matches thepolicy using on-the-fly emptiness
check. The on-the-fly procedure takes as input a contract automaton and acomplementedpolicy au-
tomaton. The decision procedure part interacts with the SMT solver NuSMV1 for satisfiability checks.
The instance of the NuSMV class is created only once at the beginning of the On-the-Fly procedure;
then we declare variables, add constraints and remove constraints from the library every time we call the
solver. We used software Java SDK version 6 and Apache Ant2 to compile the java sources and to run the
tools automatically (see [2] for details).

2 Experiments on Desktop and on Device

To decide the best configuration of integration with decision procedure, we made different design deci-
sions and run experiments on the alternatives. This analysis is important because of the resource con-
straints of mobile device; for achieving our goal even small changes in time makes sense.

∗This work is partly supported by the project EU-FP6-IST-STREP-S3MS (www.s3ms.org). We would like to thank M. Roveri
and A. Cimatti for the support in the usage of the NuSMV and MathSAT libraries and for hammering down a decision procedure
for URLs. We also acknowledge Marco Dalla Torre for support in the integration of the tools.

1http://nusmv.fbk.eu/
2http://ant.apache.org/

1



Table 1: Running Problem Suit 10 Times
MUTEX MC ONE INSTANCE CACHING SOLVER
Problem Desktop Mobile Result

ART (s) CRT (s) SV TV ART (s) CRT (s) SV TV
P1 2.4 2.4 2 6 4.3 4.3 2 6 Match
P2 2.4 4.8 2 6 4.1 8.4 2 6 Match
P3 2.4 7.2 3 11 3.9 12.3 3 11 Match
P4 2.4 9.6 2 6 4.0 16.3 2 6 Match
P5 4.7 14.3 3 11 4.1 20.4 3 11 Match

P6 2.9 2.9 4 4 3.8 3.8 3 6 Not Match
P7 2.8 5.7 5 7 3.8 7.6 2 4 Not Match
P8 2.9 8.6 5 7 3.8 11.4 3 6 Not Match

P100 9.3 9.3 102 307 11.3 11.3 102 307 Match

(a) Running Problem Suit
ART: Average Runtime for 10 runsSV: Number of Visited States
CRT: Cumulative Average RuntimeTV: Number of Visited Transitions

(b) Abbreviations

We faced a number of design options: (1)One vs Many We could either create only one instance of
solver, relying on the solver to assert and retract expressions on demand, or create a new instance of
the solver every time we call the decision procedure. (2)MUTEX SOLVER Method names are declared as
mutex constants at the moment of declaring all variables on the solver, due to an edge in the automaton
(correspond to a method) which is incompatible with another edge (correspond to a different method).
MUTEX MC allows the on-the-fly algorithm to check whether method names are the same.PRIORITY MC

Guards are evaluated usingpriority or and we can optimize the expressions sent to the decision procedure
as minimized expression.CACHING MC We saved time by caching the results of the matching. The solver
itself has a caching mechanism that could be equally used (CACHING SOLVER). However,One vs Many

decision was not possible to be taken because of the garbage collection management both by the Java
virtual machine and by the libraries of MathSAT/NuSMV (only one instance of solver exists at time).

We ran our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40GHz, 3389.442MHz,
1.99GB of RAM, 2048 KB cache size) with operating system Linux version 2.6.20-16-generic, Kubuntu
7.04 (Feisty Fawn). We also ported the prototype to the mobile, namely HTC P3600 (3G PDA phone)
with ROM 128MB, RAM 64MB, SamsungR©SC32442A processor 400MHz and operating system Mi-
crosoft Windows MobileR©5.0. The experiments were made for different design decisions for different
problem suits(see [3] for details). The problem suits covered different kind of categories such as network
connectivity, use of costly functionalities, or private information management. Most problems have few
states and transitions as a result the matching algorithm runtime is little (around 2.5s for running on Desk-
top and 4s for running on mobile). Even for pathological problem with 102 visited states, the runtime
while running on a mobile platform is still acceptable (9.3s for Desktop, 11.3s on mobile).

We collected data on resources used, namely number of visited states, number of visited transitions,
running time for each problem in each design alternative, and the number of solved problems against
time. All methods seem to perform equally well and promising for the deployment on resource con-
strained in mobile device. Our current implementation usesPRIORITY MC ONE INSTANCE CACHING MC

configuration.PRIORITY MC is preferred because of the nature of rules in policies which ispriority or,
also becauseMUTEX SOLVER does not allow empty methods such as¬mi ∧¬mj which is possible in the
matching algorithm.ONE INSTANCE is chosen because of garbage collection problem.CACHING MC is
desired in order to save calls to solver for the already solved rules.

References
[1] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv 2: An

opensource tool for symbolic model checking. InProc. of CAV’02, 2002.

[2] N. Bielova, M. Dalla Torre, N. Dragoni, and I. Siahaan. Matching policies with security claims of mobile applications. In
Proc. of the 3rd Int. Conf. on Availability, Reliability and Security (ARES’08). IEEE Press, 2008.

[3] N. Bielova, F. Massacci, and I. Siahaan. Testing decision procedures for security-by-contract. InJoint Workshop on Foun-
dations of Computer Security, Automated Reasoning for Security Protocol Analysis and Issues in the Theory of Security
(FCS-ARSPA-WITS’08), 2008. submitted.

2


