
A Security-by-Contracts Architecture for Pervasive
Services

Fabio Massacci, Nicola Dragoni, and Ida S.R. Siahaan

DIT, Universit́a di Trento, via Sommarive 14, 38050 Povo, Trento, Italy

1 Security-by-Contract (S×C)[3]

The paradigm of pervasive services [1] envisions a nomadic user traversing a variety
of environments and seamlessly and constantly receiving services from other portables,
handhelds, embedded or wearable computers. When traversing environments the no-
madic user does not only invoke services according a web-service-like fashion (either
in push or pull mode) but also downloadnewapplications that are able to exploit its
computational power in order to make a better use of the unexpected services avail-
able in the environment. Thesepervasive client downloadswill appear because service
providers will try to exploit the computational power of the nomadic devices to make
a better use of the services available in the environment. To address the challenges of
this paradigm we propose the notion ofsecurity-by-contract(S×C), as in programming-
by-contract, based on the notion of a mobile contract that a pervasive download carries
with itself. It describes the relevant security features of the application and the relevant
security interactions with its nomadic host.

S×C Framework. The framework ofS×C is shaped by four stake-holders: mobile
operator, service provider or developer, mobile user and third party security service
providers. Application developers are responsible to provide acontract, i.e. a formal,
complete and correct specification of the behavior of an application for what concerns
relevant security actions (Virtual Machine (VM) API Calls, Operating System Calls).
Each “application” consists of four components:executable code, run-time level con-
tract, proof of compliance, andapplication credentials. By signing the code the de-
veloper binds the code with the stated claims on its security-relevant behavior thus
providing a semantics to digital signatures. An example of a contract is “After Personal
Information Management (PIM) was opened no connections are allowed”.

Users and mobile phone operators are interested in that any software deployed on
their platform is secure by declaring security policy. Apolicy is a formal complete spec-
ification of the acceptable behavior of applications to be executed on the platform for
what concerns relevant security actions (Virtual Machine API Calls, Operating System
Calls). An example of policy is “After PIM was accessed only secure connections can
be opened i.e.url starts with ”https://” “.

A contract should be negotiated and enforced during development, at time of deliv-
ery and loading, and during execution of the application code by the mobile platform.
Fig. 1 shows the phases of theS×C life-cycle.S×C security architecture (Fig. 2) has two
goals: supporting the application and service life cycle by guaranteeing the security of
the channel between parties as well as authenticity of the parties and non-repudiation



Fig. 1.Application/Service Life-Cycle

Fig. 2.S×C Architecture

of communication actions for charging and billing, and enabling trust relationships be-
tween stakeholders, i.e. authenticity and integrity of exchanged data elements.

2 Automata Modulo Theory (AMT ) [4]

We solved the problem of matching the security claims of the code with the security
desires of the platform ofS×C in [2] with only a meta-level algorithm showing how we
can combine policies at different levels of details.The actual mathematical structure and
algorithm to do the matching is specified in [4]. The key idea is based on the introduc-
tion of the concept ofAutomata Modulo Theory(AMT ). AMT enables us to define
very expressive and customizable policies as a model forsecurity-by-contractas in [2]
and model-carrying code [6] by capturing the infinite transitions into finite transitions
labeled as expressions in defined theories.

To represent a security behavior, provided by the contract and desired by the policy,
a system can be represented as an automaton where transitions corresponds to the in-



voked methods as in the works on model-carrying code [6]. In this case, the operation
of contract matching is alanguage inclusionproblem.

AMT Theory. The theory ofAMT is a combination of the theory of B̈uchi Au-
tomata (BA) with the Satisfiability Modulo Theories (SMT) problem. SMT problem
pushes the envelope of formal verification based on effective SAT solvers. In contrast
to classical security automata we prefer to use BA because besides safety properties,
there are also some liveness properties which have to be verified. An example of live-
ness is “The application uses all the permissions it requests”.

Definition 1 (Automaton Modulo Theory (AMT )). A tupleAT = 〈E,S, q0,∆T , F 〉
whereE is a set of formulae in the language of the theoryT , S is a finite set of states,
q0 ∈ S is the initial state,∆T : S ×E → 2S is labeled transition function, andF ⊆ S
is a set of accepting states.

AMT operations for intersection and complementation require that the theory is
closed under intersection and complementation (union is similar to the standard one).
We consider only thecomplementation of deterministicAMT , because in our appli-
cation domain all security policies are naturally deterministic (as the platform owner
should have a clear idea on what to allow or disallow) (further details in [4]).

On-the-Fly State Model Checking with Decision Procedure.We are interested
in finding counterexamples faster and we combine algorithm based on Nested DFS [5]
with decision procedure for SMT. The algorithm takes as input the midlet’s claim and
the mobile platform’s policy asAMT and then starts a DFS procedure over the initial
state. When a suspect state which is an accepting state inAMT is reached we have two
cases. First, when a suspect state contains an error state of complemented policy then
we report a security policy violation without further ado. Second, when a suspect state
which is an accepting state inAMT does not contain an error state of complemented
policy we start a new DFS from the suspect state to determine whether it is in a cycle,
in other words it is reachable from itself. If it is, then we report availability violation.

Theorem 1. Let the theoryT be decidable with an oracle for the SMT problem in the
complexity classC then:

1. The non-emptiness problem forAMT T is decidable inLIN − TIMEC .
2. The non-emptiness problem forAMT T is NLOG− SPACEC .

References

1. J. Bacon. Toward pervasive computing.IEEE Perv., 1(2):84, 2002.
2. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward a Se-

mantics for Digital Signatures on Mobile Code. InProc. of EuroPKI, 2007.
3. N. Dragoni, F. Massacci, C. Schaefer, T. Walter, and E. Vetillard. A security-by-contracts

architecture for pervasive services. InProc. of SecPerU, 2007.
4. F. Massacci and I. Siahaan. Matching Midlet’s Security Claims with a Platform Security

Policy using Automata Modulo Theory.NordSec, To Appear.
5. S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. Tech Rep 2004/06,

Univ. Stuttgart, Fakulẗat Informatik, Elektrotechnik und Informationstechnik, 2004.
6. R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. DuVarney. Model-carrying code:

a practical approach for safe execution of untrusted applications. InProc. of SOSP, 2003.


