
STM 2009

Optimizing IRM with Automata Modulo
Theory ?

F. Massacci a,1 I. Siahaan a,2

a Department of Information Engineering and Computer Science (DISI), University of Trento, Italy

Abstract

Inlined Reference Monitor (IRM) is a flexible mechanism to enforce the security of untrusted applications.
One of the shortcomings of IRM is that it might introduce a significant overhead in otherwise perfectly
secure application. In this paper we propose six different framework models for IRM optimization with
respect to components that are needed to be trusted or untrusted. Then, we describe an approach for IRM
optimization using automata modulo theory. The key idea is that given a policy that represents the desired
security behavior of a platform to be inlined, we compute an optimized policy with respect to the (trusted)
claims on the security behavior of a application. The optimized policy is the one to be injected into the
untrusted code.

Keywords: Access control, Language-based security, Malicious code, Security and privacy policies

1 Motivations

In the realm of mobile communication the strong push for fancy functionalities
has brought us a wealth of communicating applications by more or less unknown
sources ranging from P2P game clients to local search engines, each of them plowing
through the user’s platform, and springing back with services from and to the rest
of the world.

The security problems arising when application developers and platform owners
are not on the same (security) side are well known from the experience of Java web
applications for the desktop. The confinement of Java applets [18] is a classical
solution. Indeed, to deal with the untrusted code either .NET [27] or Java [18] can
exploit the mechanism of permissions. Permissions are assigned to enable execution
of potentially dangerous or costly functionality, such as starting various types of
connections. The drawback of permissions is that after assigning a permission the
user has very limited control over how the permission is used. Conditional permis-
sions that allow and forbid use of the functionality depending on such factors as

? Research partly supported by the Projects EU-FP7-IP-SECURECHANGE and EU-FP7-IP-MASTER.
1 Email:fabio.massacci@unitn.it
2 Email:siahaan@disi.unitn.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:fabio.massacci@unitn.it
mailto:siahaan@disi.unitn.it

Massacci,Siahaan

bandwidth or the previous actions of the application itself (e.g. access to sensitive
files) are also out of reach. The consequence is that either applications are sand-
boxed (and thus can do almost nothing), or the user decided that they come from a
trusted source and then they can do almost everything. But coming from a trusted
source is not a surrogate for trustworthiness 3 .

In order to overcome the well-known limitation of the trusted signature or sand-
box a number of techniques have been proposed and implemented. The most promis-
ing one is the notion of Inlined Reference Monitor (IRM): it works by inlining the
code with the security policies. IRM has been implemented in several systems, for
example the PoET/PSLang toolkit [13], enforcing security policies whose transitions
pattern-match event symbols using regular expressions, or Polymer [7] based on edit
automata. The shortcoming of traditional IRM is the huge overhead resulted from
inlining.

Other extensions along this line have been further proposed. Sekar et al. [37]
have proposed the notion of Model Carrying Code (MCC) but not practical working
mechanism has been delivered. Later the Security-by-Contract (SxC) framework [11]
built upon the MCC seminal idea have shown that an effective and comprehensive
version of IRM can be deployed on mobile platforms [10]. Furthermore, Phung et al.
[36] proposed lightweight version of IRM for JavaScript that does not modify browser
or original code i.e. it adds new code only in the header of the page. An alternative
approach to IRM is by using reflection [38], where policies are implemented as meta-
objects bounded to application objects at load time, such that the code becomes
self-protecting.

Even if current version of IRM can work on rich system such as today’s smart
phones, the overhead is still too much for the next frontier of web applications: Java
cards. Indeed, the smart card technology [32] evolved with larger memories, USB
and TCP/IP support and the development of the Next-Generation (for short NG)
Java Card platform [1,2] with Servlet engine. This latter technology is a full fledged
Java platform for embedded Web applications and opens new Web 2.0 opportunities
such as NG Java Card Web 2.0 Applications. It can also serve as an alternative to
personalized applications on remote servers so that personal data no longer needs
to be transmitted to remote third-parties.

Thus, optimizing redundant monitoring without compromising security is needed.
The key idea is that given a policy that represent the desired security behavior of a
platform to be inlined, we compute an optimized policy with respect to the claims
on the security behavior of a application (for short contract). Then, we use this
optimized policy to inject the untrusted code. In the first work [39] proposed IRM
optimization for a constrained history-based access control policy such as Chinese
Wall policies using compiler optimization approach. Unfortunately, this approach is
severely limited by the expressivity of the language: it only consider propositional
conditions on policies. As a result even a simple policy such as "Only allows con-
nections to urls starting with http" cannot be optimized. An earlier work [25,13]
suggested to apply static program analysis as in compiler optimization to tame the
overhead of code instrumentation.

3 The (once) enthusiast installers of UK Channel 4 on demand services 4oD [3] might also tell that even a
branded name is not a surrogate for trust[34].

2

Massacci,Siahaan

An application is
only allowed to
perform a or m

followed by b or
n and then re-
peat the sequence
of efg.
(a) Rule of a policy

An application
never uses n, m.
It performs a

followed by b and
then repeat the
sequence of efg.
(b) Rule of a contract

An application
is only allowed
to perform a

followed by b

and then it can
do whatever, i.e.
following the
contract.

(c) Rule of an optimized policy

Fig. 1. Example of Optimization

To illustrate how an optimization works we use a simple alphabet {a, b, e, f, g,m, n}
that represent security relevant behaviors. For example we have a rule for a con-
tract(Figure 1(b)) and a rule for a policy(Figure 1(a)), then the optimized rule of
the policy is represented in Figure 1(c).

1.1 The Contributions of the Paper

We proposed to use more expressive policies for IRM optimization by using automata
theory. First, we identified the different trust models for IRM optimization, i.e. the
relative position of the optimizer and the inliner with respect to the trust border.

The formal model used for capturing contracts and policies is based on a con-
cept called Automata Modulo Theory (AMT). AMT generalizes the finite state
automata of model-carrying code [37] and extends Büchi Automata (BA). It is suit-
able for formalizing systems with finitely many states but infinitely many transitions,
by leveraging the power of satisfiability-modulo-theory (for short SMT) decision pro-
cedures. AMT enables us to define very expressive and customizable policies, by
capturing the infinite transition into finite transitions labeled as expressions in suit-
able theories. We map the problem of optimizing IRM into automata theoretic
construction of intersection and simulation.

In the next section, we introduce optimization models for IRM and discuss how
the component of this model can be implemented by a number of related works (§2).
We continue by briefly recapping the notion of AMT and the relevant operations
in (§3). We continue with fair simulation for AMT (§4) as the basic block for our
algorithm in (§5).

3

Massacci,Siahaan

2 Security Models for Optimized IRM

In this section, we introduce our IRM trust models. Figure 2(b) illustrates our
general optimization workflow model. This model is a modification of S×C workflow
(Figure 2(a) [8]) by adding optimization step. First, a code is analyzed in order
to extract contract out of it. This can be done by trusted or untrusted parties. If
done by untrusted parties, then the claimed contract needs to be verified whether it
complies to the code. If it complies, then we simulate the contract with the policy to
verify if the policy is already enforced by the contract. On failure of simulation, we
optimize policy by discharging behaviors which are already enforced by a contract
and we inject this optimized policy to the code. The overall model (Figure 2(b))
consists of the following components:

ContractExtractor and ClaimChecker The former extract policies from
code based on control flow graphs and possibly annotation existing on the code
[17]. The latter is the basic component of Proof-Carrying Code [33], where the
untrusted code supplier must provide with the code a safety proof that attests
to the code’s safety properties. In mobile system domain [21] implements a lin-
ear decision algorithm verifying that annotated .NET binaries satisfy a class of
policies using security and edit automata.

SimulationChecker uses fair simulation for AMT [31]. This key idea is based
on symbolic simulation [14,26]. A system fairly simulates another system if and
only if in the simulation game, there is a strategy that matches with each fair
computation of the simulated system a fair computation of the simulating system.
We can use this techniques to decide if the update is acceptable by different notion
of simulation.

Rewriter We use rewriter instead of inliner because it is not necessary to ac-
tually inline the entire security automaton. Some example of works on rewriter
are Naccio [15], PoET/Pslang [12], and Polymer [28]. These approaches compile
policy language into plain Java and then into Java bytecode monitor which is
injected into ordinary Java bytecode by inserting calls in all the necessary places.
Other rewriter uses reflection [38] where policies are implemented as meta-objects
bounded to application objects at load time through bytecode rewriting. This
approach is implemented using Kava which provides a non-bypassable meta level.
An alternative approach to rewriter is an inliner, for example [10] that only inlines
hooks to the monitor with the monitor itself runs in a separate thread.

Optimizer can be performed by compiler optimization approach as in [39] or by
our approach described in (§5).

The IRM approach is facilitated by the trend toward using higher-level lan-
guages, especially type safe languages, for software development. Not only do those
languages define application abstractions on which policies can be enforced, but
they also provide strong guarantees that can be used to ensure a secured application
cannot compromise its IRM. By leveraging these guarantees, an IRM security policy
can provide a single cohesive description of both the intent and the means by which
a policy is enforced. This potentially allows the IRM approach to give greater as-
surance, since enforcement now relies on a trustworthy component of moderate size

4

Massacci,Siahaan

(a) S×C WorkFlow (b) Optimization WorkFlow

Fig. 2. S×C modified as Optimization WorkFlow

(a) Contract Extractor on Trusted part (b) Contract Extractor on Untrusted part

Fig. 3. Rewriter on Trusted part

whose full specification can be studied in isolation.
The main consideration for our models is the trade off between moving more

processes out of trusted part and the complexity of the whole process (inspired by
model in [20]).

In the simplest model (Fig. 3(a)), the Untrusted part consists of only Code.
First, we extract the application contract Claim using ContractExtractor on
the trusted part. Then, we check whether this result can be simulated by the
security policy Policy using the SimulationChecker. If the simulation succeed,
then we can execute the code without further ado. Otherwise, we optimize the
enforcement mechanism by using an Optimizer which gives result OptPolicy. The
last procedure is the Rewriter which gives result an SafeCode that is ready to be
executed.

We are interested in extracting security relevant behaviors [37], that can be
performed by data flow analysis [4], control flow analysis [35], abstract interpretation
[9], or model extraction [37]. After extraction, we check whether this result can be

5

Massacci,Siahaan

Fig. 4. Optimizer and Rewriter on Untrusted part: Contract Extractor on Untrusted part

simulated by Policy(P) using SimulationChecker, which can be implemented
as automata simulation [31]. If the simulation succeed, then we can execute the
code without further ado. Otherwise, we optimize the IRM using Optimizer which
gives result OptPolicy(OptP).

In the second model (Fig. 3(b)), the Untrusted part consists of UC and C which
is extracted using ContractExtractor. We check C against UC using Claim-
Checker. This step is needed because we cannot trust C. Some works have been
developed along this line, for example the concept of type-checker in [21], signa-
ture verifier in [16], weakest precondition based annotation checker [5] specified with
ConSpec language[6], or Proof-Carrying Code [33]. If C does not comply to the UC,
then we will not make any optimization and will directly inline P into UC using
Rewriter which gives result an IC that is ready to be executed (Execute). In the
case that C complies, we run SimulationChecker and the path goes through as
of the first model.

The third model is similar to our first model by moving Rewriter to Untrusted
part. This approach is similar to [39] where the IRM optimization framework can
also be distributed with an untrusted code producer involves to make optimization
effective. The Untrusted part consists of UC and IC. The fourth model is similar
to our second model by moving Rewriter to Untrusted part. The Untrusted
part consists of UC, C which is extracted using ContractExtractor, and IC.
Moving more components out of the trusted computing base is desirable. Thus, we
propose the fifth model which is similar to our third model by moving Optimizer
also to Untrusted part. Now, the Untrusted part consists of UC, OptP and IC.

On our sixth model (Fig. 4) we move most of the components out of the trusted
domain. After running the ContractExtractor, we check the application con-
tract Claim against the application Code using the ClaimChecker. If the Claim
does not comply to Code, then we will reject Code. Rejection might be too restric-
tive, thus another option is similar to deploy directly the Policy object in charge
on monitoring in Code by using the Rewriter which gives result an SafeCode.

6

Massacci,Siahaan

3 Automata Modulo Theory

The security behaviors of a code (C) and the desired behaviors by platform (P),
can be represented as automata, where transitions corresponds to invocation of
APIs as suggested by Erlingsson [12, p.59] and Sekar et al. [37]. While this idea of
representing the security-digest as an automaton is almost a decade old, the practical
realization has been hindered by a significant technical hurdle: we cannot use the
naive encoding into automata for practical policies. For example a policy “connect
only to urls starting with https” leads to automata with infinitely many transitions.

To overcome this limitation we have introduced Automata Modulo Theory (AMT)
in [30]. AMT is a combination of the theory of Büchi Automata (BA) with the
Satisfiability Modulo Theories (SMT) problem. We prefer to use BA instead of se-
curity automata because we are interested in verifying safety, liveness and renewable
properties (see[29,22] for characterization of security policies enforceable by program
rewriting).

To make this paper self contain, we briefly discuss AMT concept and AMT
simulation and we refer to [30,31] for details.

Definition 3.1 [Automaton Modulo Theory (AMT)] A tuple A = 〈E,S, s0,∆, F 〉
where E is a set of Σ-formulas in Σ-theory T , S is a finite set of states, s0 ∈ S is
the initial state, ∆ ⊆ S × E × S is a labeled transition relation, and F ⊆ S is a set
of accepting states.

To understand the semantics of an automaton modulo theory, we need to consider
the corresponding concrete automaton. A concrete automaton is constructed by
replacing each transition (labeled with an expression from the theory), with the
infinitely many transitions (labeled by the corresponding satisfying assignments).
The concrete runs of the system are the actual system traces of values of invoked
APIs which are represented by assignments.

Definition 3.2 [AMT concrete run] Let A = 〈E,S, s0,∆, F 〉 be an AMT . A con-
crete run of A is a sequence of states alternating with assignments σC = 〈s0α0s1α1s2α2 . . .〉,
such that: i) s0 = s0, ii) there exists expressions ei ∈ E, where (si, ei, si+1) ∈ ∆
and (A, αi) |= ei holds for all i ∈ [0 . . . |w|]. A finite run is accepting if s|w| is an
accepting state and an infinite run is accepting if the automaton goes through some
accepting states infinitely often. 4

Our notion of symbolic run corresponds to the traditional notion of run in au-
tomata.

Definition 3.3 [AMT symbolic run] Let A = 〈E,S, s0,∆, F 〉 be an automaton
modulo theory T . A symbolic run modulo T of A is a sequence of states alternating
with expressions σ, = 〈s0e0s1e1s2e2 . . .〉 such that: i) s0 = s0, ii) (si, ei, si+1) ∈ ∆
and (A, αij) |= ei holds for some j, with runs acceptance as in concrete runs.

The transition function of A may have many possible transitions for each state
and expression, hence A may be non-deterministic.

4 We use definition of run as in [14] which is slightly different from the one we use in [30], where we use
only states.

7

Massacci,Siahaan

Definition 3.4 [Deterministic AMT] A = 〈E,S, s0,∆, F 〉 is a deterministic au-
tomaton modulo theory T , if and only if, for every s ∈ S and every s1, s2 ∈ S and
every e1, e2 ∈ E, if (s, e1, s1) ∈ ∆ and (s, e2, s2) ∈ ∆, where s1 6= s2 then e1 ∧ e2 is
unsatisfiable modulo T .

AMT intersection is defined over symbolic level, hence we use satisfiability on
formulas (DP (ea∧eb) = SAT) which corresponds to equality of alphabet in concrete
level.

Definition 3.5 [AMT Intersection] Let 〈E,Sa, s0a,∆a
T , F a〉 and

〈
E,Sb, s0b,∆b

T , F b
〉

be (non) deterministicAMT , theAMT intersection automaton Aab = 〈E,S, s0,∆, F 〉
is defined as follows:

S = Sa × Sb × {1, 2} (1)

s0 =
〈
s0a, s0b, 1

〉
(2)

F = F a × Sb × {1} (3)

∆ =

〈
(sa, sb, x), ea ∧ eb, (ta, tb, y)

〉
∣∣∣∣∣∣∣∣∣∣∣∣

(sa, ea, ta) ∈ ∆a and

(sb, eb, tb) ∈ ∆b and

DP (ea ∧ eb) = SAT and

marker condition

(4)

where marker condition is defined as follows: if sa ∈ F a ∧ x = 1, then y = 2; if
sa 6∈ F a ∧ x = 1, then y = 1; if sb ∈ F b ∧ x = 2, then y = 1, otherwise x = y.

4 Simulation

The SimulationChecker and Optimizer use fair simulation defined in game
graph. Therefore, in this section we introduce the notion of simulation at the con-
crete level, among assignments i.e. API calls, and we continue giving the notion of
symbolic simulation as in [23]. The actual notion of fair simulation is adapted from
[14,19,24].

Definition 4.1 [Concrete Fair Compliance Game] Let Ac and Ap beAMT with ini-
tial states s0 and t0 respectively. A Concrete Fair Compliance Game GC

Ac,Ap(s0, t0)
is played by two players, C and P , in rounds.

(i) In the first round C is on the initial state s0 ∈ Sc and P is on the initial state
t0 ∈ Sp.

(ii) C chooses a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T and an assignment αi such that
(A, αi) |= ec

i) and moves to si+1.

(iii) P responds by a transition 〈ti, ep
i , ti+1〉 ∈ ∆p

T such that (A, αi) |= ep
i) and moves

to ti+1.

The winner of the game is determined by the following rules:

• If the C cannot move then P wins.
• If the P cannot move then C wins.

8

Massacci,Siahaan

• Otherwise there are two infinite concrete runs
→
s= 〈s0α0s1α1s2α2, . . .〉 and

→
t = 〈t0α0t1α1t2α2, . . .〉 respectively of Ac and Ap. If

→
s= 〈s0α0s1α1s2α2, . . .〉 is an accepting concrete run for Ac and

→
t = 〈t0α0t1α1t2α2, . . .〉

is not an accepting concrete run for Ap then C wins. In other cases, P wins.

Intuitively in the compliance game, C tries to make a move and the P follows
accordingly to show that the C move is allowed. If the P cannot move then C is
not compliant: there is a move that the P could not do and that particular action
is a violation. Next, we generalize the notion of simulation to symbolic level, among
expressions.

Definition 4.2 [AMT Fair Compliance Game] A Fair Compliance Game
GAc,Ap(s0, t0) is played by two players, C and P , in rounds.

(i) In the first round C is on the initial state s0 ∈ Sc and P is on the initial state
t0 ∈ Sp.

(ii) C chooses a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T where ec
i is satisfiable.

(iii) P responds by a transition ∆p
T (ti, e

p
i , ti+1) such that ec

i → ep
i is valid.

The winner of the game is determined by the rules as in Definition 4.1 with the
difference in run where we define run over expressions instead of assignments.

In AMT Fair Compliance Game C tries to make a symbolic move and the P

follows suit in order to show that the C move is allowed. If the P cannot move
this means that the C may not be compliant because there is a symbolic move that
the P could not do. As in [31], for simulation algorithm we adapts the Jurdzinski’s
algorithm on parity games [26].

Definition 4.3 [Compliance Graph] Let V0 and V1 be two disjoint sets, a compliance
graph G is a tuple 〈V1, V0, E, l〉, where V = V0∪V1, E ⊆ V ×V , and l : V → {0, 1, 2}.

Intuitively the compliance level l(v) is 0 when the simulating automaton accepts,
1 when the simulated automaton accepts (but the simulating automaton has not
accepted yet) and 2 when neither of them accepts.

A compliance game P (G, v0) on G starting at v0 ∈ V is played by two players
P and C. The game starts by placing pebble on v0. At round i with pebble on vi,
vi ∈ V0(V1), P (C resp.) plays and moves the pebble to vi+1 such that (vi, vi+1) ∈ E.
The player who cannot move loses. For infinite play π = v0v1v2 . . ., the winner
defined as the minimum compliance level that occurs infinitely often, namely if the
minimum compliance level is 0 or 2 then P wins, otherwise C wins.

We apply this compliance game to AMT such that given 〈E,Sc, s0c,∆c
T , F c〉

and
〈
E,Sp, s0p,∆p

T , F p
〉
, we construct a 〈V1, V0, E, l〉 as follows:

• V1= {v(sc,sp)|sc ∈ Sc, sp ∈ Sp}
• V0= {v(sc,sp,ec)|sc ∈ Sc, sp ∈ Sp,∃rc.sc ∈ ∆c

T (rc, ec)}
• E= {(v(sc,sp,ec), v(sc,tp))|tp ∈ ∆c

T (sp, ep) ∧ V ALID(ec → ep)} ∪
{(v(sc,sp), v(tc,sp,ec))|tc ∈ ∆c

T (sc, ec)}

9

Massacci,Siahaan

Algorithm 1 Simulation Algorithm
Input: two AMT automata (policy C, policy P)

1: Construct compliance game graph G = 〈V1, V0, E, l〉
2: for all v ∈ V do
3: µ(v) := µnew(v) := 0
4: repeat
5: µ := µnew

6: for all v ∈ V0 do

7: µnew(v) :=

∞ if {µ(w)|(v, w)} = ∅

min {µ(w)|(v, w)} otherwise
8: for all v ∈ V1 do
9: maxv := max {µ(w)|(v, w) ∈ E}

10: µnew(v) :=

∞ if maxv = ∞

0 if l(v) = 0

maxv + 1 if l(v) = 1

maxv if l(v) = 2
11: until µ = µnew

12: if µ(v(s0c,s0p)) < ∞ then
13: Simulation exists

•

l(v) =

0 if v = v(sc,sp) and sp ∈ F p

1 if v = v(sc,sp) and sc ∈ F c and sp /∈ F p

2 otherwise

Next, we define a compliance measure µ : V →
{
x|x ≤ |l−1(1)|

}
∪{∞}. µ ranges

from 0 to |l−1(1)| because at l(v)=1 the simulated automaton (contract) accepts
but the simulating automaton (policy) has not accepted yet. Thus, progressing the
measure has the analogy of computing the fix point where the C remains winning
and ∞ shows that the µ keeps progressing beyond this limit, meaning C wins the
game. If l(v) = 1, then µ(v) > µ(w), where |l−1(1)|+1 = ∞. If l(v) = 2 or l(v) = 0,
then µ(v) ≥ µ(w).

The compliance measure for each node is the number of potential bad nodes,
namely nodes where the contract accepts but the policy does not, that it can reach.
Thus, µ(v) = ∞ means that there is an infinite path where policy cannot return to
compliance level 0.

5 A Search Procedure for IRM Optimization

The problem of searching an optimized policy can be stated intuitively as follows:
given two automata C and P representing respectively the formal specification of a
contract and of a policy, we have an efficient IRM OptP derived from P with respect

10

Massacci,Siahaan

to C when:

(i) every APIs invoked by the intersection of OptP and C can also be invoked by
P , and

(ii) OptP has smaller number of transitions or states than P with respect to C.

The most relaxed P can be obtained by allowing anything to happen, we call
it P ∗. Prior to construction of P ∗, we remove edges of non existing alphabet from
contract. To construct P ∗, for each edge in P we replace edge with ∗ (corresponding
to true) and check that it remains compliant, i.e. P can simulate the intersection
(3.5) between C and P ∗. If simulation fails, we put the original edge in P ∗. This
step fulfills the property i and to fulfill property ii we use AMT minimization with
input P ∗ and use the approach as in [19]. First, we try to merge equivalence states
and then remove redundant edges in P ∗.

Merge equivalence states. We initialize the set of states to be merged as
the set of all states of P ∗. Then, we construct a game graph where C and P

are the same automaton, i.e. P ∗. We try to merge states by picking two states
sopt, s

′
opt. Two states can be merged when they have the same incoming transitions

and outgoing transitions and behave the same with the same input. Thus, we add
outgoing transitions of sopt to s′opt and vice versa. We also add incoming transitions
of sopt to s′opt and vice versa. Then, we recompute game graph by adding these
transitions and re-run game. If succeed then we merge s′optand sopt.

Remove redundant transitions. We initialize the set of transitions to be
removed as the set of all transitions from the automaton P ∗′ , i.e. P ∗ after merging
equivalent states. Then, we construct a game graph where C and P are the same
automaton, i.e. P ∗′ . We try to remove a transition by picking a transition (u, e, v)
in P ∗′ where there exists a w that simulates v and (u, e, w) is also in P ∗′ . When
we remove a transition in P ∗′ , we also remove some edges in the game graph that
correspond to the removed transition. Thus we need not re-run simulation from
scratch, but we can compute our game incrementally. So, we save the resulted µ

in a vector and each time we re-run simulation we initialize our game from this
computed µ instead of 0.e recompute game graph by removing these transitions and
re-run game. If simulation succeed then we remove (u, e, v).

6 Conclusions

The main goal of this work has been to provide an answer to the following question:
given an untrusted code and a policy that a platform specifies to be inlined, how
can we obtain an optimized IRM ? To address this issue we have proposed six
different framework models for IRM optimization with respect to components that
are needed to be trusted or untrusted. We have also described an approach for IRM
optimization based on automata theory. The key idea is that given a policy that
represent the desired security behavior of a platform to be inlined, we compute an
optimized policy with respect to the claims on the security behavior of a application
that we inject to the untrusted code.

Future work will include comparative study of IRM with or without optimization
and the effect of changes both in frequency (how often a code modified) and size

11

Massacci,Siahaan

(how much a code modified).

References

[1] Card specification version 2.2, Technical report, GlobalPlatform (2006), report available at
www.globalplatform.org.

[2] Confidential card content management card specification v 2.2 - amendment a, Public Release
GPC_SPE_007, GlobalPlatform (2007), report available at www.globalplatform.org.

[3] 4, C., 4od, Available on the web http://www.channel4.com/4od/index.html (2008).

[4] Aho, A., R. Sethi and J. Ullman, “Compilers: principles, techniques, and tools,” Addison-Wesley, 1986.

[5] Aktug, I., M. Dam and D. Gurov, Provably correct runtime monitoring, J. of Logic and Algebraic
Programming (2009).

[6] Aktug, I. and K. Naliuka, Conspec - a formal language for policy specification, Proc. of the 1st Int.
Workshop on Run Time Enforcement for Mobile and Distributed Systems (REM2007) (2007).

[7] Bauer, L., J. Ligatti and D. Walker, Edit automata: Enforcement mechanisms for run-time security
policies, Int. J. of Inform. Sec. 4 (2005), pp. 2–16.
URL http://www.ece.cmu.edu/~lbauer/papers/editauto-ijis05.pdf

[8] Bielova, N., N. Dragoni, F. Massacci, K. Naliuka and I. Siahaan., Matching in security-by-contract for
mobile code, J. of Logic and Algebraic Programming (2009), to Appear.

[9] Cousot, P. and R. Cousot, Abstract interpretation frameworks, J. of Logic and Computation 2 (1992),
pp. 511–547.

[10] Desmet, L., W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan and D. Vanoverberghe,
Security-by-contract on the .NET platform, Information Security Tech. Rep. 13 (2008), pp. 25 – 32.

[11] Dragoni, N., F. Massacci, K. Naliuka and I. Siahaan, Security-by-Contract: Toward a Semantics for
Digital Signatures on Mobile Code, in: Proc. of the 4th European PKI Workshop Theory and Practice
(EUROPKI’07) (2007), p. 297.

[12] Erlingsson, U., “The Inlined Reference Monitor Approach to Security Policy Enforcement,” Ph.D. thesis,
Department of Computer Science, Cornell University (2004).

[13] Erlingsson, U. and F. Schneider, IRM enforcement of Java stack inspection, in: Proc. of the 2000 IEEE
Symp. on Security and Privacy, 2000, pp. 246–255.

[14] Etessami, K., T. Wilke and R. Schuller, Fair simulation relations, parity games, and state space
reduction for büchi automata, SIAM J. on Comp. 34 (2005), pp. 1159–1175.

[15] Evans, D., “Policy-Directed Code Safety,” Ph.D. thesis, MIT (1999).

[16] Ghindici, D., G. Grimaud and I. Simplot-Ryl, An information flow verifier for small embedded systems,
in: D. S. et al., editor, Proc. Workshop in Information Security Theory and Practices: Smart Cards,
Mobile and Ubiquitous Computing Systems (WISTP’07), LNCS 4462 (2007), pp. 189–201.

[17] Ghindici, D., I. Simplot-Ryl and J.-M. Talbot, A sound analysis for secure information flow using
abstract memory graphs, in: The 3rd Int. Conf. on Fundamentals of Sw. Eng. (FSEN’09), 2009.

[18] Gong, L., G. Ellison and M. Dageforde, “Inside Java 2 Platform Security: Architecture, Api Design,
and Implementation,” Addison-Wesley Professional, 2003.

[19] Gurumurthy, S., R. Bloem and F. Somenzi, Fair simulation minimization, in: Proc. of the 14th Int.
Conf. on Computer Aided Verification (CAV’02) (2002), pp. 610–624.

[20] Hamlen, K., “Security policy enforcement by automated program-rewriting,” Ph.D. thesis, Cornell
University (2006).

[21] Hamlen, K., G. Morrisett and F. Schneider, Certified in-lined reference monitoring on .net, in: Proc.
of the 2006 workshop on Prog. Lang. and analysis for security (2006), pp. 7–16.

[22] Hamlen, K. W., G. Morrisett and F. B. Schneider, Computability classes for enforcement mechanisms,
ACM Trans. Program. Lang. Syst. 28 (2006), pp. 175–205.

[23] Hennessy, M. and H. Lin, Symbolic bisimulations, in: MFPS’92: Selected papers of the meeting on Math.
Foundations of Programming Semantics (1995), pp. 353–389.

12

http://www.ece.cmu.edu/~lbauer/papers/editauto-ijis05.pdf

Massacci,Siahaan

[24] Henzinger, T., O. Kupferman and S. Rajamani, Fair simulation, in: Proc. of of the 8th Int. Conf. on
Concurrency Theory (1997), pp. 273–287.

[25] Jeffery, C., W. Zhou, K. Templer and M. Brazell, A lightweight architecture for program execution
monitoring, ACM SIGPLAN Notices 33 (1998), pp. 67–74.

[26] Jurdzinski, M., Small progress measures for solving parity games, in: STACS ’00: Proc. of the 17th
Annual ACM Symposium on Theoretical Aspects of Computer Science (2000), pp. 290–301.

[27] LaMacchia, B. and S. Lange, “.NET Framework security,” Addison Wesley, 2002.

[28] Ligatti, J., “Policy Enforcement via Program Monitoring.” Ph.D. thesis, Princeton University (2006).

[29] Ligatti, J., L. Bauer and D. Walker, Run-time enforcement of nonsafety policies, ACM Trans. on Inf.
and Syst. Security 12 (2009), pp. 1–41.

[30] Massacci, F. and I. Siahaan., Matching midlet’s security claims with a platform security policy using
automata modulo theory, in: Proc. of the 12th Nordic Workshop on Secure IT Systems (NordSec’07),
2007.

[31] Massacci, F. and I. Siahaan., Simulating midlet’s security claims with automata modulo theory, in:
Proc. of the 2008 workshop on Prog. Lang. and analysis for security, 2008, pp. 1–9.

[32] Mayes, K. and K. Markantonakis, “Smart Cards, Tokens, Security and Applications,” Springer-Verlag,
2008.

[33] Necula, G., Proof-carrying code, in: Proc. of the 24th ACM SIGPLAN-SIGACT Symp. on Princ. of
Prog. Lang. (1997), pp. 106–119.

[34] Networks, C., Channel 4’s 4od: Tv on demand, at a price., Crave Webzine (2007).

[35] Nielson, F. and H. Nielson, Flow logic for imperative objects, in: Proc. of the 23rd Int. Symp. on Math.
Foundations of Comp. Scie. (1998), pp. 220–228.

[36] Phung, P., D. Sands and A. Chudnov, Lightweight Self-Protecting JavaScript, in: Proc. of the 4th ACM
Symposium on Information Comp. and Comm. Sec. (ASIACCS 2009), 2009, pp. 10–12.

[37] Sekar, R., V. Venkatakrishnan, S. Basu, S. Bhatkar and D. DuVarney, Model-carrying code: a practical
approach for safe execution of untrusted applications, in: Proc. of the 19th ACM Symp. on Operating
Syst. Princ. (2003), pp. 15–28.

[38] Welch, I. and R. Stroud, Using reflection as a mechanism for enforcing security policies on compiled
code, J. of Comp. Sec. 10 (2002), pp. 399–432.

[39] Yan, F. and P. W. L. Fong, Efficient IRM Enforcement of History-Based Access Control Policies, in:
Proc. of the 4th ACM Symposium on Information Comp. and Comm. Sec. (ASIACCS 2009), 2009,
pp. 35–46.

13

	Motivations
	The Contributions of the Paper

	Security Models for Optimized IRM
	Automata Modulo Theory
	Simulation
	A Search Procedure for IRM Optimization
	Conclusions
	References

