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Motivations

• A validation infrastructure exists
• Mobile devices are increasingly popular and 

powerful
• Lack of applications for mobile devices

– A signature is checked on the device
– No semantics is attached to it

• Some technologies exist
– Static analysis to prove program properties
(Leroy et al.,  Morriset et al., Fournet et al.)
– Monitor generation for complex properties 
(Havelund & Rosu, Erlingsson et al., Hamlen et al., Ligatti et al.)
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Security-by-Contract (SxC) 
Key Concepts

• Key idea: (Dragoni et al. EuroPKI’07)
– the digital signature should not just certify the origin of the code but rather bind 

together the code with a contract
– Model-Carrying Code – model that captures the security-relevant behavior of 

code
– Design-by-contract

• Contract carried by application;
– Claimed Security behavior of application
– (Security) interactions with its host platform
– Maybe with Proof that code satisfies contract

• Policy specified by a platform.
– Desired Security behavior of application
– Fine-grained resource control

• End Users’ Distilled Security Requirements e.g:
– NETwork connectivity
– PRIvate information management
– INTeraction with other applets 
– Power consumption
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SxC Workflow – User’s View
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Contributions

• Algorithms:
– meta-level algorithm (Dragoni et al. EuroPKI’07) 
– mathematical structure for algorithm to do the matching 

(Massacci & Siahaan, NordSec’07)
• Does it work in practice?

– contract/policy matching implementation (Dragoni et al. 
ARES’08) 

• Our main contributions of this paper: 
– integration issues with decision procedure solver NuSMV

integrated with its MathSAT libraries
– performance analysis of the integration design alternatives:

• construction of expressions
• initialization of solver
• caching of temporary results
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Language of contract/policy

• ConSpec – automata-based language
• The specifications in ConSpec is suitable for all 

phases of Security-By-Contract lifecycle
– Contract / Policy Matching
– Monitor In-lining

• Contract and Policy are mapped to the specific 
automata representation

• Matching = Language inclusion
– Actions allowed by the contract subset actions 

allowed by the policy
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Contract vs Policy

Rules 

•• Used Methods Used Methods 

•• Bounds onBounds on MethodsMethods ArgsArgs

•• BoundsBounds on on retret ValuesValues

•• AllowedAllowed SequencesSequences

•• AchievableAchievable ObligationsObligations

Contract = What you Claim Policy = What you should a t most do

Language Inclusion = Simulation of Finite Automata ?

(Massacci & Siahaan, NordSec’07)   (Massacci & Siahaan, PLAS’08)

(Sekar et al.)

Rules 

•• Possible Methods Possible Methods 

•• ConstraintsConstraints on on MethodsMethods ArgsArgs

•• ConstraintsConstraints on on retret ValuesValues

•• HistoryHistory--basedbased access controlaccess control

•• DesiredDesired ObligationsObligations



8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 9/20

Università degli Studi di Trento

What kind of automaton?

• We need “infinite” edges to describe 
policies

CONTRACT: 
The application only uses 
HTTPS network connections

Abbreviations for JAVA APIs:

joc = io.Connector.open(url)

p(url) = url.startsWith(”http://”)

s(url) = url.startsWith(”https://”)
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Automata Modulo Theory 
(AMTAMTAMTAMT)

• AMT
– Finite state automata with “infinite” edges
– BUT Finitely represented with Expressions:

p = io.Connector.open(url) && 
(url.startsWith(”http://”) || url.startsWith(”https://”))

• Matching = Language inclusion can be reduced to an 
emptiness test:

LAutC � LAutP � LAutC ∩ LNEG AutP = ∅

• Search for counterexamples:
– Path allowed by contract but NOT allowed by policy

10
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Contract vs Policy in AMTAMTAMTAMT

Abbreviations for JAVA APIs: joc = io.Connector.open(url)
p(url) = url.startsWith(”http://”)
s(url) = url.startsWith(”https://”)

11

CONTRACT: 
The application only uses HTTPS 
network connections

Automaton:

POLICY:  
The application uses only high-level 
(HTTP, HTTPS) network  connections

Negated automaton:
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Architecture of Matching 
Prototype

12

Off-line: mapping to 
automaton –
expensive operation
complementation –
for optimization
On-line: On-The-
Fly  algorithm
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On-the-Fly Model Checking

� The search space for counterexample (a trace that satisfies 
the Contract and violates the Policy)

13

On-the-Fly Algorithm  with 
decision procedure for SMT 
Interaction with the  solver of 
math expression NuSMV
for satisfiability checks.

( io.Connector.open(url) /\ !url.startsWith(”https:/ /”) )/\
(io.Connector.open(url) /\
(url.startsWith(”http://”) \/ url.startsWith(”https ://”)))
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On-the-Fly Model Checking with 
Decision Procedure

14
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Design Decisions
• One vs Many 

– only one instance of solver or a new instance of the solver every call of decision 
procedure

• MUTEX SOLVER 
– all the method names are declared as mutex constants at the moment of 

declaring all variables
– expression sent to the solver: method = name^cond^otherConds

• MUTEX MC 
– allows the on-the-fly algorithm to check whether method names are the same 
– expression sent to the solver if check passed: cond ^ otherConds

• PRIORITY MC 
– guards are evaluated using priority OR
– expressions as lemmas: cond

• CACHING MC 
– many edges will be traversed again and again => caching the results of the 

matching
– Solver has a caching mechanism that could be equally used: CACHING 

SOLVER
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Experiments on Desktop and on 
Device

• Implemented on a Java platform for a Desktop PC
– Intel(R) Pentium(R) D CPU 3.40GHz,3389.442MHz, 1.99GB of RAM, 

2048 KB cache size) with operating system Linux version 2.6.20-16-
generic, Kubuntu 7.04 (Feisty Fawn) 

• Some experimental results on .NET implementation for a Mobile 
platform i.e. ported to HTC P3600 
– 3G PDA phone with ROM 128MB, RAM 64MB, SamsungR SC32442A 

processor 400MHz

Problems Suit
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Results on Desktop and on Device

Running Problem Suit 10 Times
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Performance Analysis of 
Integration Design Alternatives

Cumulative response time of matching algorithm on Desktop PC
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Issues yet to be addressed

• Encoding of history dependent policies
– allow certain strings we saw in the past

• Eg connect only to url in the JAR manifest
• Combine AMT with History Dependent Automata (Montanari 

& Pistore 1998)
• Combine AMT with Extended Finite State Automata (Sekar et 

al. 2002)

• Infinite expressions
– allow concrete run of infinite domains 

• Eg natural number not limited to some maximum length 
• Combine AMT with Finite Memory Automata (Kaminski & 

Francez 1994)
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Conclusions
• Security-by-Contract

– Always consider complete lifecycle monitoring is the end 
– Matching: be able to check that claimed security behavior of what you want to 

run is good for your security policy
• Automata Modulo Theory

– Invented for security policies of mobile code but…
– usable for any security policy with a finite control structure but potentially infinite 

data 
• (secure workflows, protocol analysis, control-flow analysis etc.)

– IF polynomial theory for deciding edges THEN Practical
• Implementation of Contract/Policy Matching

– Current implementation uses PRIORITY MC ONE INSTANCE CACHING MC 
configuration.

• PRIORITY MC: the nature of rules in policies i.e priority OR
• MUTEX SOLVER does not allow empty methods e.g. ¬mi ^ ¬ mj i.e possible in the 

matching algorithm 
• ONE INSTANCE: garbage collection problem 
• CACHING MC: save calls to solver for the already solved rules

• Experiments on Desktop and on Device


