
Università degli Studi di Trento

Testing Decision Procedures for
Security-by-Contract

Nataliia Bielova, Ida Siahaan
University of Trento

Joint Workshop on Foundations of Computer Security, Automated Reasoning
for Security Protocol Analysis and Issues in the Theory of Security

FCS-ARSPA-WITS'08
Carnegie Mellon University, Pittsburgh – USA

June 21-22, 2008

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 2/20

Università degli Studi di Trento

Outline

• Motivation
• Security-by-Contract (SxC)

– Concepts
– Workflow

• Contract/Policy Matching
– Specifications language
– Automata Modulo Theory (AMT)
– On-the-Fly Model Checking with Decision Procedure

• Prototype Implementation and Experiments
• Conclusions

– Issues yet to be addressed

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 3/20

Università degli Studi di Trento

Motivations

• A validation infrastructure exists
• Mobile devices are increasingly popular and

powerful
• Lack of applications for mobile devices

– A signature is checked on the device
– No semantics is attached to it

• Some technologies exist
– Static analysis to prove program properties
(Leroy et al., Morriset et al., Fournet et al.)
– Monitor generation for complex properties
(Havelund & Rosu, Erlingsson et al., Hamlen et al., Ligatti et al.)

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 4/20

Università degli Studi di Trento

Security-by-Contract (SxC)
Key Concepts

• Key idea: (Dragoni et al. EuroPKI’07)
– the digital signature should not just certify the origin of the code but rather bind

together the code with a contract
– Model-Carrying Code – model that captures the security-relevant behavior of

code
– Design-by-contract

• Contract carried by application;
– Claimed Security behavior of application
– (Security) interactions with its host platform
– Maybe with Proof that code satisfies contract

• Policy specified by a platform.
– Desired Security behavior of application
– Fine-grained resource control

• End Users’ Distilled Security Requirements e.g:
– NETwork connectivity
– PRIvate information management
– INTeraction with other applets
– Power consumption

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 5/20

Università degli Studi di Trento

SxC Workflow – User’s View

© 2007 by DoCoMo

Communications Laboratories
Europe GmbH

Check
Evidence

Y/N

Match
contract &
policies

Y/N

Enforce
policies

Yes

No
In-
lining

Perform
in-lining

Execute
application

Yes

Yes

Perform
run-time
monitoring

No

No

Start

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 6/20

Università degli Studi di Trento

Contributions

• Algorithms:
– meta-level algorithm (Dragoni et al. EuroPKI’07)
– mathematical structure for algorithm to do the matching

(Massacci & Siahaan, NordSec’07)
• Does it work in practice?

– contract/policy matching implementation (Dragoni et al.
ARES’08)

• Our main contributions of this paper:
– integration issues with decision procedure solver NuSMV

integrated with its MathSAT libraries
– performance analysis of the integration design alternatives:

• construction of expressions
• initialization of solver
• caching of temporary results

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 7/20

Università degli Studi di Trento

Language of contract/policy

• ConSpec – automata-based language
• The specifications in ConSpec is suitable for all

phases of Security-By-Contract lifecycle
– Contract / Policy Matching
– Monitor In-lining

• Contract and Policy are mapped to the specific
automata representation

• Matching = Language inclusion
– Actions allowed by the contract subset actions

allowed by the policy

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 8/20

Università degli Studi di Trento

Contract vs Policy

Rules

•• Used Methods Used Methods

•• Bounds onBounds on MethodsMethods ArgsArgs

•• BoundsBounds on on retret ValuesValues

•• AllowedAllowed SequencesSequences

•• AchievableAchievable ObligationsObligations

Contract = What you Claim Policy = What you should a t most do

Language Inclusion = Simulation of Finite Automata ?

(Massacci & Siahaan, NordSec’07) (Massacci & Siahaan, PLAS’08)

(Sekar et al.)

Rules

•• Possible Methods Possible Methods

•• ConstraintsConstraints on on MethodsMethods ArgsArgs

•• ConstraintsConstraints on on retret ValuesValues

•• HistoryHistory--basedbased access controlaccess control

•• DesiredDesired ObligationsObligations

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 9/20

Università degli Studi di Trento

What kind of automaton?

• We need “infinite” edges to describe
policies

CONTRACT:
The application only uses
HTTPS network connections

Abbreviations for JAVA APIs:

joc = io.Connector.open(url)

p(url) = url.startsWith(”http://”)

s(url) = url.startsWith(”https://”)

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 10/20

Università degli Studi di Trento

Automata Modulo Theory
(AMTAMTAMTAMT)

• AMT
– Finite state automata with “infinite” edges
– BUT Finitely represented with Expressions:

p = io.Connector.open(url) &&
(url.startsWith(”http://”) || url.startsWith(”https://”))

• Matching = Language inclusion can be reduced to an
emptiness test:

LAutC � LAutP � LAutC ∩ LNEG AutP = ∅

• Search for counterexamples:
– Path allowed by contract but NOT allowed by policy

10

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 11/20

Università degli Studi di Trento

Contract vs Policy in AMTAMTAMTAMT

Abbreviations for JAVA APIs: joc = io.Connector.open(url)
p(url) = url.startsWith(”http://”)
s(url) = url.startsWith(”https://”)

11

CONTRACT:
The application only uses HTTPS
network connections

Automaton:

POLICY:
The application uses only high-level
(HTTP, HTTPS) network connections

Negated automaton:

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 12/20

Università degli Studi di Trento

Architecture of Matching
Prototype

12

Off-line: mapping to
automaton –
expensive operation
complementation –
for optimization
On-line: On-The-
Fly algorithm

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 13/20

Università degli Studi di Trento

On-the-Fly Model Checking

� The search space for counterexample (a trace that satisfies
the Contract and violates the Policy)

13

On-the-Fly Algorithm with
decision procedure for SMT
Interaction with the solver of
math expression NuSMV
for satisfiability checks.

(io.Connector.open(url) /\ !url.startsWith(”https:/ /”))/\
(io.Connector.open(url) /\
(url.startsWith(”http://”) \/ url.startsWith(”https ://”)))

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 14/20

Università degli Studi di Trento

On-the-Fly Model Checking with
Decision Procedure

14

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 15/20

Università degli Studi di Trento

Design Decisions
• One vs Many

– only one instance of solver or a new instance of the solver every call of decision
procedure

• MUTEX SOLVER
– all the method names are declared as mutex constants at the moment of

declaring all variables
– expression sent to the solver: method = name^cond^otherConds

• MUTEX MC
– allows the on-the-fly algorithm to check whether method names are the same
– expression sent to the solver if check passed: cond ^ otherConds

• PRIORITY MC
– guards are evaluated using priority OR
– expressions as lemmas: cond

• CACHING MC
– many edges will be traversed again and again => caching the results of the

matching
– Solver has a caching mechanism that could be equally used: CACHING

SOLVER

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 16/20

Università degli Studi di Trento

Experiments on Desktop and on
Device

• Implemented on a Java platform for a Desktop PC
– Intel(R) Pentium(R) D CPU 3.40GHz,3389.442MHz, 1.99GB of RAM,

2048 KB cache size) with operating system Linux version 2.6.20-16-
generic, Kubuntu 7.04 (Feisty Fawn)

• Some experimental results on .NET implementation for a Mobile
platform i.e. ported to HTC P3600
– 3G PDA phone with ROM 128MB, RAM 64MB, SamsungR SC32442A

processor 400MHz

Problems Suit

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 17/20

Università degli Studi di Trento

Results on Desktop and on Device

Running Problem Suit 10 Times

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 18/20

Università degli Studi di Trento

Performance Analysis of
Integration Design Alternatives

Cumulative response time of matching algorithm on Desktop PC

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 19/20

Università degli Studi di Trento

Issues yet to be addressed

• Encoding of history dependent policies
– allow certain strings we saw in the past

• Eg connect only to url in the JAR manifest
• Combine AMT with History Dependent Automata (Montanari

& Pistore 1998)
• Combine AMT with Extended Finite State Automata (Sekar et

al. 2002)

• Infinite expressions
– allow concrete run of infinite domains

• Eg natural number not limited to some maximum length
• Combine AMT with Finite Memory Automata (Kaminski &

Francez 1994)

8/6/2008 Bielova Siahaan - FCS-ARSPA-WITS'08 20/20

Università degli Studi di Trento

Conclusions
• Security-by-Contract

– Always consider complete lifecycle monitoring is the end
– Matching: be able to check that claimed security behavior of what you want to

run is good for your security policy
• Automata Modulo Theory

– Invented for security policies of mobile code but…
– usable for any security policy with a finite control structure but potentially infinite

data
• (secure workflows, protocol analysis, control-flow analysis etc.)

– IF polynomial theory for deciding edges THEN Practical
• Implementation of Contract/Policy Matching

– Current implementation uses PRIORITY MC ONE INSTANCE CACHING MC
configuration.

• PRIORITY MC: the nature of rules in policies i.e priority OR
• MUTEX SOLVER does not allow empty methods e.g. ¬mi ^ ¬ mj i.e possible in the

matching algorithm
• ONE INSTANCE: garbage collection problem
• CACHING MC: save calls to solver for the already solved rules

• Experiments on Desktop and on Device

