
Università degli Studi di Trento

Testing Decision Procedures for
Security-by-Contract

(Extended Abstract)

Nataliia Bielova, Fabio Massacci, Ida Siahan
University of Trento

Joint CSF/LICS 2008 Short-Talk Session on Logic and Security
Carnegie Mellon University, Pittsburgh – USA

June 24, 2008

8/6/2008 Bielova Siahan - FCS-ARSPA-WITS'08 2/6

Università degli Studi di Trento

SxC Workflow – User’s View

© 2007 by DoCoMo

Communications Laboratories
Europe GmbH

Check
Evidence

Y/N

Match
contract &
policies

Y/N

Enforce
policies

Yes

No
In-
lining

Perform
in-lining

Execute
application

Yes

Yes

Perform
run-time
monitoring

No

No

Start

8/6/2008 Bielova Siahan - FCS-ARSPA-WITS'08 3/6

Università degli Studi di Trento

On-the-fly Policy-Contract
Algorithm

• Finding counterexamples faster:
– combine algorithm b on Nested DFS [Schwoon & Esparza]

– decision procedure for SMT [Cimatti et al.]

– Explicit on-the-fly parallel visit of NegPolicy and Contract

• Algorithm
– Start a DFS procedure over the initial pair of states (nP&C)
– IF DP sat on pair of outgoing edges => visit successor pair
– IF an accepting pair of states in AMT is reached:

IF one is error state of neg policy => security violation
ELSE start a new DFS
• IF cycle back => availability violation.

8/6/2008 Bielova Siahan - FCS-ARSPA-WITS'08 4/6

Università degli Studi di Trento

Contract-Policy Architecture

8/6/2008 Bielova Siahan - FCS-ARSPA-WITS'08 5/6

Università degli Studi di Trento

Design Decisions
• One vs Many

– Either create only one instance of solver, relying on the solver to assert and retract expressions on demand,
or create a new instance of the solver every time we call the decision procedure.

• MUTEX SOLVER
– if an edge in the automaton correspond to a call to a method it is obviously incompatible with another edge

calling a different method. Such constraints could be directly incorporated into the algorithm without the need
to represent them as boolean mutual exclusion constraints on the boolean variables representing method
invocations. In this case all the method names are declared as mutex constants at the moment of declaring
all variables, then the expression sent to the solver has the following structure: method =
name^cond^otherConds. Hence, if the method names of two edges are not the same then the
DecisionProcedure returns false.

• MUTEX MC
– allows the on-the-fly algorithm to check whether method names are the same. The DecisionProcedure is

called with parameters: cond ^ otherConds only if this check is passed.
• PRIORITY MC

– the semantics for security policy is that guards are evaluated using priority OR hence we can optimize the
expressions sent to the decision procedure as lemmas. Using the lemma, the Expression sent to the
DecisionProcedure is minimized and it has only cond.

• CACHING MC
– Since many edges will be traversed again and again we could save time by caching the results of the

matching. The solver itself has a caching mechanism that could be equally used (CACHING SOLVER).
• Current implementation uses PRIORITY MC ONE INSTANCE CACHING MC configuration.

– PRIORITY MC: the nature of rules in policies which is priority OR
– MUTEX SOLVER does not allow empty methods such as ¬mi ^ ¬mj which is possible in the matching

algorithm.
– ONE INSTANCE: garbage collection problem.
– CACHING MC: save calls to solver for the already solved rules.

8/6/2008 Bielova Siahan - FCS-ARSPA-WITS'08 6/6

Università degli Studi di Trento

Experiments on Desktop and on
Device

• Implemented on a Java platform for a Desktop PC
– Intel(R) Pentium(R) D CPU 3.40GHz,3389.442MHz, 1.99GB of RAM,

2048 KB cache size) with operating system Linux version 2.6.20-16-
generic, Kubuntu 7.04 (Feisty Fawn)

• Some experimental results on .NET implementation for a Mobile
platform i.e. ported to HTC P3600
– 3G PDA phone with ROM 128MB, RAM 64MB, SamsungR SC32442A

processor 400MHz

Problems Suit

