
* Research partly supported by the project EU-IST-STREP-S3MS (http://www.s3ms.org)

Security-by-Contract: Toward a Semantics for
Digital Signatures on Mobile Code*

N. Dragoni, F. Massacci, K. Naliuka and I. Siahaan
Department of Information and Communication Technologies

University of Trento, ITALY
dragoni@dit.unitn.it

EUROPKI’07 - Mallorca, Balearic Islands, Spain

http://www.s3ms.org
http://www.s3ms.org
mailto:dragoni@dit.unitn.it
mailto:dragoni@dit.unitn.it

EUROPKI’07 Nicola Dragoni30/06/2007

Talk Outline

2

๏ Introduction

๏ Security-By-Contract Framework

๏ Stakeholders

๏ Contract and Policy

๏ Application/Service Life-Cycle

๏ Contract-Policy Matching

๏ Problem

๏ Algorithm

EUROPKI’07 Nicola Dragoni30/06/2007

Lack of Applications for Mobile Devices

3

• Mobile devices are increasingly popular and powerful

• Yet, the growth in computing power of nomadic devices has not been
supported by a comparable growth in available software

• For instance, on high-end mobile phones we cannot even remotely find the
amount of third party software that was available on our old PC

EUROPKI’07 Nicola Dragoni30/06/2007

A Reason: Security Model for Mobile Code

4

• One of the reasons for this lack of applications is also the security model
adopted for mobile phones.

• The current security model approach (for instance, the JAVA MIDP 2.0) is
based on trust relationships: mobile code is run if its origin is trusted.

• This essentially boils down to mobile code is accepted if it is digitally signed
by a trusted party.

• The level of trust of the “trusted party” determines the privileges of the code
by essentially segregating it into an appropriate trust domain.

EUROPKI’07 Nicola Dragoni30/06/2007

Trust Relationship Problem (1)

5

The problem with trust relationship, i.e. digital signatures on mobile code, is
twofold:

1. At first we can only reject or accept the signature.
This means that interoperability in a domain is either total or not existing: an
application from a not-so-trusted source can be denied network access, but
it cannot be denied access to a specific protocol, or to a specific domain.

• E.g. if a payment service is available on a platform and an application for
paying parking meters is loaded, the user cannot block the application
from performing large payments.

2. The second (and major) problem, is that there is no semantics attached to
the signature. This is a problem for both code producers and consumers.

EUROPKI’07 Nicola Dragoni30/06/2007

Trust Relationship Problem (2)

6

• From the point of view of the code consumers, they must essentially
accept the code “as-is” without the possibility of making informed
decisions.

• One might well trust SuperGame Inc. to provide excellent games and yet
might decide to rule out games that keep playing while the battery fells
below 20%. At present such choice is not possible.

• From the point of view of the code producers, they produce code with
unbounded liability. They cannot declare which security actions the code will
do. By signing the code they essentially declare that they did it.

EUROPKI’07 Nicola Dragoni30/06/2007

Trust Relationship Problem (2)

6

• From the point of view of the code consumers, they must essentially
accept the code “as-is” without the possibility of making informed
decisions.

• One might well trust SuperGame Inc. to provide excellent games and yet
might decide to rule out games that keep playing while the battery fells
below 20%. At present such choice is not possible.

• From the point of view of the code producers, they produce code with
unbounded liability. They cannot declare which security actions the code will
do. By signing the code they essentially declare that they did it.

The consequence is that injecting an application in the mobile market is a time
consuming operation as developers must essentially convince the operators
that their code will not do anything harmful.

EUROPKI’07 Nicola Dragoni30/06/2007

SxC Framework: Stakeholders

The Security-by-Contract framework is essentially shaped by three groups of
stakeholders:
1. mobile operator
2. service provider and/or developer
3. mobile user

7

The mobile code developers are responsible to provide a description of the
security behavior that their code provides.

EUROPKI’07 Nicola Dragoni30/06/2007

SxC Framework: Contract

8

The mobile code developers are responsible to provide a description of the
security behavior that their code provides.

EUROPKI’07 Nicola Dragoni30/06/2007

SxC Framework: Contract

Contract: a contract is a formal complete and
correct specification of the behavior of an
application for what concerns relevant
security actions (Virtual Machine API Calls,
Operating System Calls).

What’s in a code’s contract?
➡ security features of application
➡ (security) interactions with its host platform
➡ proof-of-compliance that code satisfies contract

8

The mobile code developers are responsible to provide a description of the
security behavior that their code provides.

EUROPKI’07 Nicola Dragoni30/06/2007

SxC Framework: Contract

Contract: a contract is a formal complete and
correct specification of the behavior of an
application for what concerns relevant
security actions (Virtual Machine API Calls,
Operating System Calls).

By signing the code the developer certifies that the code complies with the
stated claims on its security-relevant behavior.

What’s in a code’s contract?
➡ security features of application
➡ (security) interactions with its host platform
➡ proof-of-compliance that code satisfies contract

8

On the other side we can see that users and mobile phone operators are
interested that all codes that are deployed on their platform are secure.

In other words they must declare their security policy.

EUROPKI’07 Nicola Dragoni30/06/2007

SxC Framework: Policy

Policy: a policy is a formal complete
specification of the acceptable behavior of
applications to be executed on the platform
for what concerns relevant security actions
(Virtual Machine API Calls, Operating System
Calls).

What’s in a platform’s policy?
➡ platform contractual requirements on application
➡ fine-grained resource control (e.g. silently initiate a phone call or send a SMS)
➡ memory usage, secure and insecure web connections, user privacy

protection
9

EUROPKI’07 Nicola Dragoni30/06/2007

How a Contract/Policy Should Look Like?

1. The application sends no more than a number messages in each session

2. The application only loads each image from the network once

3. The delay between two periodic invocations of the MIDlet is at least T

4. The application does not initiate calls to international numbers

5. The application only uses files whose name matches a given pattern

6. The application does not send MMS messages

7. The application connects only to its origin domain

8. The application must close all files that it opens

9. The application only receives SMS messages on a specific port

...

10

EUROPKI’07 Nicola Dragoni30/06/2007

Application/Service Life Cycle (1)
A contract should be negotiated and enforced during development, at time of
delivery and loading, and during execution of the application by the mobile
platform.

Phases of the application/
service life-cycle in which
the contract-based security
paradigm is present.

11

In order to guarantee that an application complies with its desired contract (or
the policy requested on a particular platform) we should consider the stage
where such enforcement can be done.

EUROPKI’07 Nicola Dragoni30/06/2007

Application/Service Life Cycle (2)

Development Deployment Execution

(I) At design and
development time

(II) After design but
before shipping
the application

(III) When
downloading the
application

(IV) During the
execution of the
application

12

In order to guarantee that an application complies with its desired contract (or
the policy requested on a particular platform) we should consider the stage
where such enforcement can be done.

EUROPKI’07 Nicola Dragoni30/06/2007

Application/Service Life Cycle (2)

‣ Enforcing at level (I) can be achieved by appropriate design rules and require
developer support

Development Deployment Execution

(I) At design and
development time

(II) After design but
before shipping
the application

(III) When
downloading the
application

(IV) During the
execution of the
application

12

In order to guarantee that an application complies with its desired contract (or
the policy requested on a particular platform) we should consider the stage
where such enforcement can be done.

EUROPKI’07 Nicola Dragoni30/06/2007

Application/Service Life Cycle (2)

‣ Enforcing at level (I) can be achieved by appropriate design rules and require
developer support

‣ (II) and (III) can be carried out through (automatic) verification techniques.
Such verifications can take place
‣ before downloading (static verification by developers and operators

followed by a contract coming with a trusted signature) or
‣ as a combination of pre and post-loading operations (e.g., through in-line

monitors and proof carrying code)

Development Deployment Execution

(I) At design and
development time

(II) After design but
before shipping
the application

(III) When
downloading the
application

(IV) During the
execution of the
application

12

In order to guarantee that an application complies with its desired contract (or
the policy requested on a particular platform) we should consider the stage
where such enforcement can be done.

EUROPKI’07 Nicola Dragoni30/06/2007

Application/Service Life Cycle (2)

‣ Enforcing at level (I) can be achieved by appropriate design rules and require
developer support

‣ (II) and (III) can be carried out through (automatic) verification techniques.
Such verifications can take place
‣ before downloading (static verification by developers and operators

followed by a contract coming with a trusted signature) or
‣ as a combination of pre and post-loading operations (e.g., through in-line

monitors and proof carrying code)

Development Deployment Execution

(I) At design and
development time

(II) After design but
before shipping
the application

(III) When
downloading the
application

(IV) During the
execution of the
application

‣ (IV) can be implemented by run-time checking
12

EUROPKI’07 Nicola Dragoni30/06/2007

Contract/Policy Matching

One of the key problems in the overall
security-by-contract life-cycle is the
contract-policy matching issue.

Given:
‣ a contract that an application carries

with itself
‣ a policy that a platform specifies
is the contract compliant with the policy?

• Intuitively, matching should succeed if and only if by executing the application
on the platform every behaviour of the application that satisfies its contract
also satisfies the platform’s policy.

• Contract-policy matching represents a common problem in the life-cycle
because it must be done at all levels: both for development and run-time
operation.

13

A single contract/policy is specified as a list of disjoint rules instead of one
giant specification describing all possible security properties. A rule is defined
according to the following grammar:

<RULE> :=
SCOPE [OBJECT <class> |

 SESSION |
 MULTISESSION]

RULEID <identifier>
<formal specification>

EUROPKI’07 Nicola Dragoni30/06/2007

Contract Specification

14

A single contract/policy is specified as a list of disjoint rules instead of one
giant specification describing all possible security properties. A rule is defined
according to the following grammar:

<RULE> :=
SCOPE [OBJECT <class> |

 SESSION |
 MULTISESSION]

RULEID <identifier>
<formal specification>

EUROPKI’07 Nicola Dragoni30/06/2007

Contract Specification

Scope definition reflects at which
scope the specified contract will
be applied.

14

OBJECT: the obligation must be fulfilled by each object of a given type.

SESSION: the obligation must be fulfilled by each run of the application
separately.

MULTISESSION: the obligation must be fulfilled by all runs of the application
as a whole.

A single contract/policy is specified as a list of disjoint rules instead of one
giant specification describing all possible security properties. A rule is defined
according to the following grammar:

<RULE> :=
SCOPE [OBJECT <class> |

 SESSION |
 MULTISESSION]

RULEID <identifier>
<formal specification>

EUROPKI’07 Nicola Dragoni30/06/2007

Contract Specification

The tag RULEID identifies the area of the contract (which security-relevant
actions the policy concerns, for example “files” or “connections”).

15

A single contract/policy is specified as a list of disjoint rules instead of one
giant specification describing all possible security properties. A rule is defined
according to the following grammar:

<RULE> :=
SCOPE [OBJECT <class> |

 SESSION |
 MULTISESSION]

RULEID <identifier>
<formal specification>

EUROPKI’07 Nicola Dragoni30/06/2007

Contract Specification

The tag RULEID identifies the area of the contract (which security-relevant
actions the policy concerns, for example “files” or “connections”).

The <formal specification> part of a rule gives a rigorous and not ambiguous
definition of the semantics of the rule.

15

EUROPKI’07 Nicola Dragoni30/06/2007

Abstract Constructs

Security-by-Contract: Toward a Semantics for Digital Signatures on Mobile Code 303

recommend to consider such an option carefully before using it because the matching
of such contracts and policies can be inefficient.

The <formal specification> part of a rule gives a rigorous and not ambigu-
ous definition of the behavior (semantics) of the rule. Since several semantics might
be used for this purpose (such as standard process algebras, security automata, Petri
Nets and so on), for the limited scope of this paper we abstract from a particular formal
specification, identifying the necessary abstract constructs for combining and compar-
ing rules. Moreover, we assume that rules can be combined and compared for matching
only if they have the same scope. This assumption allows us to reduce the problem of
combining rules to the one of combining their formal specifications, without consider-
ing scopes. Therefore the first thing we do when analyzing the specifications is to group
rules within one scope together and reason about them separately.

We have identified the following abstract operators (C and P indicate a generic con-
tract and policy respectively):

– [Combine Operator ⊕] Spec = ⊕i=1,...,nSpeci
It combines all the rule formal specifications Spec1, . . ., Specn in a new specifica-
tion Spec.

– [Simulate Operator ≈] SpecC ≈ SpecP

It returns 1 if rule formal specification SpecC simulates rule formal specification
SpecP , 0 otherwise.

– [Contained-By Operator #] SpecC # SpecP

It returns 1 if the behavior specified by SpecC is among the behaviors that are
allowed by SpecP , 0 otherwise.

– [Traces Operator] S = Traces (Spec)
It returns the set S of all the possible sequences of actions that can be performed
according to the formal specification Spec.

We assume that the above abstract constructs are characterized by the following
properties:

Property 1. Traces (Spec1 ⊕ Spec2) = Traces (Spec1) ∪ Traces (Spec2)

Property 2. Spec1 # Spec2 ⇔ Traces (Spec1) ⊆ Traces (Spec2)

Property 3. Spec1 ≈ Spec2 ⇒ Traces (Spec1) ⊆ Traces (Spec2)

Definition 3 (Exact Matching). Matching should succeed if and only if by executing
the application on the platform every trace that satisfies the application’s contract also
satisfies the platform’s policy:

Traces
(
⊕i=1,...,nSpecC

i

)
⊆ Traces

(
⊕i=1,...,mSpecP

i

)

Definition 4 (Sound Sufficient Matching). Matching should fail if by executing the
application on the platform there might be an application trace that satisfies the con-
tract and does not satisfies the policy.

Definition 5 (Complete Matching). Matching should succeed if by executing the ap-
plication on the platform every traces satisfying the contract also satisfy the policy.

16

We have identified the following abstract operators (C and P indicate a generic
contract and policy respectively):

EUROPKI’07 Nicola Dragoni30/06/2007

Contract-Policy Matching Problem

17

306 N. Dragoni et al.

Algorithm 1. MatchContracts Function
Input: rule set RC , rule set RP

Output: 1 if RC matches RP , 0 otherwise
1:

〈
RC

SESSION , RC
MULTISESSION ,

{
RC

class

}
class∈ζC

〉
⇐ Partition

(
RC

)

2:
〈
RP

SESSION , RP
MULTISESSION ,

{
RP

class

}
class∈ζP

〉
⇐ Partition

(
RP

)

3: if MatchRules
(
RC

SESSION , RP
SESSION

)
then

4: if MatchRules
(
RC

MULTISESSION , RP
MULTISESSION

)
then

5: for all class ∈ ζP do // for all classes in policy
6: if MatchRules

(
RC

class, RP
class

)
then // if class /∈ ζC , then RC

class = ∅
7: skip
8: else
9: return(0)

10: end if
11: end for
12: return(1)
13: end if
14: end if
15: return(0)

Algorithm 2. Partition Procedure
Input: rule set R
Output:

〈
RSESSION, RMULTISESSION , {Rclass}class∈ζ

〉

1: RSESSION ⇐ {r ∈ R | Scope(r) = SESSION}
2: RMULTISESSION ⇐ {r ∈ R | Scope(r) = MULTISESSION}
3: for all class ∈ ζ do // for all classes in contract/policy
4: Rclass ⇐ {r ∈ R | Scope(r) = OBJECT < class >}
5: end for

Algorithm 3. MatchRules Function
Input: rule set RC , rule set RP

Output: 1 if RC matches RP , 0 otherwise
1: LC ⇐

{(
IDC , SpecC

)
|
〈
scope, IDC , SpecC

〉
∈ RC

}

2: LP ⇐
{(

IDP , SpecP
)
|
〈
scope, IDP , SpecP

〉
∈ RP

}

3: for all
(
IDP , SpecP

)
∈ LP do

4: if MatchSpec
(
LC ,

(
IDP , SpecP

))
then

5: skip
6: else // may return ∅ for efficiency
7: LP

failed ⇐ LP
failed∪

(
IDP , SpecP

)

8: end if
9: end for

10: if LP
failed = ∅ then

11: return(1)
12: else
13: return

(
MatchSpec

((
∗, ⊕(IDC , SpecC)∈LC

)
,
(
∗, ⊕(IDP , SpecP)∈LP

failed

)))

14: end if

EUROPKI’07 Nicola Dragoni30/06/2007

Matching Algorithm (1)

18

306 N. Dragoni et al.

Algorithm 1. MatchContracts Function
Input: rule set RC , rule set RP

Output: 1 if RC matches RP , 0 otherwise
1:

〈
RC

SESSION , RC
MULTISESSION ,

{
RC

class

}
class∈ζC

〉
⇐ Partition

(
RC

)

2:
〈
RP

SESSION , RP
MULTISESSION ,

{
RP

class

}
class∈ζP

〉
⇐ Partition

(
RP

)

3: if MatchRules
(
RC

SESSION , RP
SESSION

)
then

4: if MatchRules
(
RC

MULTISESSION , RP
MULTISESSION

)
then

5: for all class ∈ ζP do // for all classes in policy
6: if MatchRules

(
RC

class, RP
class

)
then // if class /∈ ζC , then RC

class = ∅
7: skip
8: else
9: return(0)

10: end if
11: end for
12: return(1)
13: end if
14: end if
15: return(0)

Algorithm 2. Partition Procedure
Input: rule set R
Output:

〈
RSESSION, RMULTISESSION , {Rclass}class∈ζ

〉

1: RSESSION ⇐ {r ∈ R | Scope(r) = SESSION}
2: RMULTISESSION ⇐ {r ∈ R | Scope(r) = MULTISESSION}
3: for all class ∈ ζ do // for all classes in contract/policy
4: Rclass ⇐ {r ∈ R | Scope(r) = OBJECT < class >}
5: end for

Algorithm 3. MatchRules Function
Input: rule set RC , rule set RP

Output: 1 if RC matches RP , 0 otherwise
1: LC ⇐

{(
IDC , SpecC

)
|
〈
scope, IDC , SpecC

〉
∈ RC

}

2: LP ⇐
{(

IDP , SpecP
)
|
〈
scope, IDP , SpecP

〉
∈ RP

}

3: for all
(
IDP , SpecP

)
∈ LP do

4: if MatchSpec
(
LC ,

(
IDP , SpecP

))
then

5: skip
6: else // may return ∅ for efficiency
7: LP

failed ⇐ LP
failed∪

(
IDP , SpecP

)

8: end if
9: end for

10: if LP
failed = ∅ then

11: return(1)
12: else
13: return

(
MatchSpec

((
∗, ⊕(IDC , SpecC)∈LC

)
,
(
∗, ⊕(IDP , SpecP)∈LP

failed

)))

14: end if

306 N. Dragoni et al.

Algorithm 1. MatchContracts Function
Input: rule set RC , rule set RP

Output: 1 if RC matches RP , 0 otherwise
1:

〈
RC

SESSION , RC
MULTISESSION ,

{
RC

class

}
class∈ζC

〉
⇐ Partition

(
RC

)

2:
〈
RP

SESSION , RP
MULTISESSION ,

{
RP

class

}
class∈ζP

〉
⇐ Partition

(
RP

)

3: if MatchRules
(
RC

SESSION , RP
SESSION

)
then

4: if MatchRules
(
RC

MULTISESSION , RP
MULTISESSION

)
then

5: for all class ∈ ζP do // for all classes in policy
6: if MatchRules

(
RC

class, RP
class

)
then // if class /∈ ζC , then RC

class = ∅
7: skip
8: else
9: return(0)

10: end if
11: end for
12: return(1)
13: end if
14: end if
15: return(0)

Algorithm 2. Partition Procedure
Input: rule set R
Output:

〈
RSESSION, RMULTISESSION , {Rclass}class∈ζ

〉

1: RSESSION ⇐ {r ∈ R | Scope(r) = SESSION}
2: RMULTISESSION ⇐ {r ∈ R | Scope(r) = MULTISESSION}
3: for all class ∈ ζ do // for all classes in contract/policy
4: Rclass ⇐ {r ∈ R | Scope(r) = OBJECT < class >}
5: end for

Algorithm 3. MatchRules Function
Input: rule set RC , rule set RP

Output: 1 if RC matches RP , 0 otherwise
1: LC ⇐

{(
IDC , SpecC

)
|
〈
scope, IDC , SpecC

〉
∈ RC

}

2: LP ⇐
{(

IDP , SpecP
)
|
〈
scope, IDP , SpecP

〉
∈ RP

}

3: for all
(
IDP , SpecP

)
∈ LP do

4: if MatchSpec
(
LC ,

(
IDP , SpecP

))
then

5: skip
6: else // may return ∅ for efficiency
7: LP

failed ⇐ LP
failed∪

(
IDP , SpecP

)

8: end if
9: end for

10: if LP
failed = ∅ then

11: return(1)
12: else
13: return

(
MatchSpec

((
∗, ⊕(IDC , SpecC)∈LC

)
,
(
∗, ⊕(IDP , SpecP)∈LP

failed

)))

14: end if

EUROPKI’07 Nicola Dragoni30/06/2007

Matching Algorithm (1)

18

306 N. Dragoni et al.

Algorithm 1. MatchContracts Function
Input: rule set RC , rule set RP

Output: 1 if RC matches RP , 0 otherwise
1:

〈
RC

SESSION , RC
MULTISESSION ,

{
RC

class

}
class∈ζC

〉
⇐ Partition

(
RC

)

2:
〈
RP

SESSION , RP
MULTISESSION ,

{
RP

class

}
class∈ζP

〉
⇐ Partition

(
RP

)

3: if MatchRules
(
RC

SESSION , RP
SESSION

)
then

4: if MatchRules
(
RC

MULTISESSION , RP
MULTISESSION

)
then

5: for all class ∈ ζP do // for all classes in policy
6: if MatchRules

(
RC

class, RP
class

)
then // if class /∈ ζC , then RC

class = ∅
7: skip
8: else
9: return(0)

10: end if
11: end for
12: return(1)
13: end if
14: end if
15: return(0)

Algorithm 2. Partition Procedure
Input: rule set R
Output:

〈
RSESSION, RMULTISESSION , {Rclass}class∈ζ

〉

1: RSESSION ⇐ {r ∈ R | Scope(r) = SESSION}
2: RMULTISESSION ⇐ {r ∈ R | Scope(r) = MULTISESSION}
3: for all class ∈ ζ do // for all classes in contract/policy
4: Rclass ⇐ {r ∈ R | Scope(r) = OBJECT < class >}
5: end for

Algorithm 3. MatchRules Function
Input: rule set RC , rule set RP

Output: 1 if RC matches RP , 0 otherwise
1: LC ⇐

{(
IDC , SpecC

)
|
〈
scope, IDC , SpecC

〉
∈ RC

}

2: LP ⇐
{(

IDP , SpecP
)
|
〈
scope, IDP , SpecP

〉
∈ RP

}

3: for all
(
IDP , SpecP

)
∈ LP do

4: if MatchSpec
(
LC ,

(
IDP , SpecP

))
then

5: skip
6: else // may return ∅ for efficiency
7: LP

failed ⇐ LP
failed∪

(
IDP , SpecP

)

8: end if
9: end for

10: if LP
failed = ∅ then

11: return(1)
12: else
13: return

(
MatchSpec

((
∗, ⊕(IDC , SpecC)∈LC

)
,
(
∗, ⊕(IDP , SpecP)∈LP

failed

)))

14: end if

EUROPKI’07 Nicola Dragoni30/06/2007

Matching Algorithm (2)

19

Security-by-Contract: Toward a Semantics for Digital Signatures on Mobile Code 307

Algorithm 4. MatchSpec Function
Input: LC =

〈(
IDC

1 , SpecC
1

)
, . . . ,

(
IDC

n , SpecC
n

)〉
,
(
IDP , SpecP

)

Output: 1 if LC matches
(
IDP , SpecP

)
, 0 otherwise

1: if ∃
(
IDC , SpecC

)
∈ LC ∧ IDC = IDP then

2: if HASH(SpecC) = HASH(SpecP) then
3: return(1)
4: else if SpecC ≈ SpecP then
5: return(1)
6: else if SpecC % SpecP then
7: return(1)
8: else // Restriction: if same ID then same specification must match
9: return(0)

10: end if
11: else
12: MatchSpec

((
∗, ⊕(IDC , SpecC)∈LC

)
,
(
∗, SpecP

))

13: end if

the case, then the matching succeeds, otherwise the more computationally expensive
containment check is performed (line 6). If also this check fails, the algorithm ends and
matching fails (because the rules with the same ID must have the same specification).

If there exists no pair in LC such that IDC is equal to IDP (line 11) then the algo-
rithm checks the match between the combination of all the specifications in LC and(
IDP , SpecP

)
(line 12).

5.1 Applying the Generic Matching Algorithm to Automata-Based Rule
Specifications

In this Section we show how the matching algorithm can be used when the behavior of
rules (<formal specification>) is specified by means of finite state automata
(FSA). In this way we provide a complete algorithm for matching contracts with FSA-
based rule specifications. As already remarked at the beginning of Section 5, we just
need to provide an implementation of the ⊕, " and ≈ operators used in Algorithms 3
and 4. For the sake of clarity, we briefly introduce FSA. Then we provide algorithms
for implementing the abstract constructs.

FSA are widely used as a powerful formalism both for system modeling and for
specification of system properties. Basically, FSA consists of finite numbers of states;
transitions between states are performed through actions. A subset of states is selected
to be accepting states. If after performing a sequence of actions (a run) the FSA arrives
in an accepting state then the automaton is said to accept this sequence of actions.

FSA that represents a model of the system can be extracted directly from the control-
flow graph of the program. This automaton specifies actual behavior of the system.
An automaton that specifies the desired behavior can be either built directly or from
other specification language. For example, FSA for a temporal logic specification can
be constructed using the tableaux method [11].

A QUI

EUROPKI’07 Nicola Dragoni30/06/2007

Matching Algorithm (3)

20

EUROPKI’07 Nicola Dragoni30/06/2007

Matching as Language Inclusion

21

EUROPKI’07 Nicola Dragoni30/06/2007

Matching as Language Inclusion

on-the-fly

21

EUROPKI’07 Nicola Dragoni30/06/2007

Conclusion

The contributions of the paper are threefold:

1. First, we have proposed the security-by-contract framework providing a
description of the overall life-cycle of mobile code in this setting.

2. Then we have described a tentative structure for a contractual language.

3. Finally, we have proposed a number of algorithms for one of the key steps in
the life-cycle process: the issue of contract-policy matching.

The main novelty of the proposed framework is that it would provide a
semantics for digital signatures on mobile code thus being a step in the
transition from trusted code to trustworthy code.

22

EUROPKI’07 Nicola Dragoni30/06/2007

Conclusion

The contributions of the paper are threefold:

1. First, we have proposed the security-by-contract framework providing a
description of the overall life-cycle of mobile code in this setting.

2. Then we have described a tentative structure for a contractual language.

3. Finally, we have proposed a number of algorithms for one of the key steps in
the life-cycle process: the issue of contract-policy matching.

The main novelty of the proposed framework is that it would provide a
semantics for digital signatures on mobile code thus being a step in the
transition from trusted code to trustworthy code.

22

THANKS!

Security-by-Contract: Toward a Semantics for Digital Signatures on Mobile Code 303

recommend to consider such an option carefully before using it because the matching
of such contracts and policies can be inefficient.

The <formal specification> part of a rule gives a rigorous and not ambigu-
ous definition of the behavior (semantics) of the rule. Since several semantics might
be used for this purpose (such as standard process algebras, security automata, Petri
Nets and so on), for the limited scope of this paper we abstract from a particular formal
specification, identifying the necessary abstract constructs for combining and compar-
ing rules. Moreover, we assume that rules can be combined and compared for matching
only if they have the same scope. This assumption allows us to reduce the problem of
combining rules to the one of combining their formal specifications, without consider-
ing scopes. Therefore the first thing we do when analyzing the specifications is to group
rules within one scope together and reason about them separately.

We have identified the following abstract operators (C and P indicate a generic con-
tract and policy respectively):

– [Combine Operator ⊕] Spec = ⊕i=1,...,nSpeci
It combines all the rule formal specifications Spec1, . . ., Specn in a new specifica-
tion Spec.

– [Simulate Operator ≈] SpecC ≈ SpecP

It returns 1 if rule formal specification SpecC simulates rule formal specification
SpecP , 0 otherwise.

– [Contained-By Operator #] SpecC # SpecP

It returns 1 if the behavior specified by SpecC is among the behaviors that are
allowed by SpecP , 0 otherwise.

– [Traces Operator] S = Traces (Spec)
It returns the set S of all the possible sequences of actions that can be performed
according to the formal specification Spec.

We assume that the above abstract constructs are characterized by the following
properties:

Property 1. Traces (Spec1 ⊕ Spec2) = Traces (Spec1) ∪ Traces (Spec2)

Property 2. Spec1 # Spec2 ⇔ Traces (Spec1) ⊆ Traces (Spec2)

Property 3. Spec1 ≈ Spec2 ⇒ Traces (Spec1) ⊆ Traces (Spec2)

Definition 3 (Exact Matching). Matching should succeed if and only if by executing
the application on the platform every trace that satisfies the application’s contract also
satisfies the platform’s policy:

Traces
(
⊕i=1,...,nSpecC

i

)
⊆ Traces

(
⊕i=1,...,mSpecP

i

)

Definition 4 (Sound Sufficient Matching). Matching should fail if by executing the
application on the platform there might be an application trace that satisfies the con-
tract and does not satisfies the policy.

Definition 5 (Complete Matching). Matching should succeed if by executing the ap-
plication on the platform every traces satisfying the contract also satisfy the policy.

EUROPKI’07 Nicola Dragoni30/06/2007

Appendix A - Definitions

2. Sound Sufficient Matching: matching should fail if by executing the
application on the platform there might be an application trace that satisfies
the contract and does not satisfy the policy.

3. Complete Matching: matching should succeed if by executing the application
on the platform every traces satisfying the contract also satisfy the policy.

By applying Def. 2 we might reject “good” applications that are however too difficult
or too complex to perform. On the other hand, Def. 3 may allow “bad” applications to
run but it will certainly accept all “good” ones (and “bad” applications can later be
detected, for instance, by run-time monitoring).

23

1. Exact Matching: matching should succeed if and only if by executing the
application on the platform every trace that satisfies the application’s
contract also satisfies the platform’s policy:

EUROPKI’07 Nicola Dragoni30/06/2007

Appendix B - Abstract Constructs

Security-by-Contract: Toward a Semantics for Digital Signatures on Mobile Code 303

recommend to consider such an option carefully before using it because the matching
of such contracts and policies can be inefficient.

The <formal specification> part of a rule gives a rigorous and not ambigu-
ous definition of the behavior (semantics) of the rule. Since several semantics might
be used for this purpose (such as standard process algebras, security automata, Petri
Nets and so on), for the limited scope of this paper we abstract from a particular formal
specification, identifying the necessary abstract constructs for combining and compar-
ing rules. Moreover, we assume that rules can be combined and compared for matching
only if they have the same scope. This assumption allows us to reduce the problem of
combining rules to the one of combining their formal specifications, without consider-
ing scopes. Therefore the first thing we do when analyzing the specifications is to group
rules within one scope together and reason about them separately.

We have identified the following abstract operators (C and P indicate a generic con-
tract and policy respectively):

– [Combine Operator ⊕] Spec = ⊕i=1,...,nSpeci
It combines all the rule formal specifications Spec1, . . ., Specn in a new specifica-
tion Spec.

– [Simulate Operator ≈] SpecC ≈ SpecP

It returns 1 if rule formal specification SpecC simulates rule formal specification
SpecP , 0 otherwise.

– [Contained-By Operator #] SpecC # SpecP

It returns 1 if the behavior specified by SpecC is among the behaviors that are
allowed by SpecP , 0 otherwise.

– [Traces Operator] S = Traces (Spec)
It returns the set S of all the possible sequences of actions that can be performed
according to the formal specification Spec.

We assume that the above abstract constructs are characterized by the following
properties:

Property 1. Traces (Spec1 ⊕ Spec2) = Traces (Spec1) ∪ Traces (Spec2)

Property 2. Spec1 # Spec2 ⇔ Traces (Spec1) ⊆ Traces (Spec2)

Property 3. Spec1 ≈ Spec2 ⇒ Traces (Spec1) ⊆ Traces (Spec2)

Definition 3 (Exact Matching). Matching should succeed if and only if by executing
the application on the platform every trace that satisfies the application’s contract also
satisfies the platform’s policy:

Traces
(
⊕i=1,...,nSpecC

i

)
⊆ Traces

(
⊕i=1,...,mSpecP

i

)

Definition 4 (Sound Sufficient Matching). Matching should fail if by executing the
application on the platform there might be an application trace that satisfies the con-
tract and does not satisfies the policy.

Definition 5 (Complete Matching). Matching should succeed if by executing the ap-
plication on the platform every traces satisfying the contract also satisfy the policy.

24

We have identified the following abstract operators (C and P indicate a generic
contract and policy respectively):

