

Matching Policies with Security
Claims of Mobile Applications

N. Bielova, M. Dalla Torre, N. Dragoni and I. Siahaan

Department of Information Engineering and Computer Science

University of Trento, ITALY

bielova@disi.unitn.it

ARES’08 - Barcelona , Spain

1Research partly supported by the project EU-FP6-IST-STREP-S3MS
(http://www.s3ms.org)

Talk outline

� Security-by-contract
• Introduction

• Key concepts

• Workflow

� Contract/Policy Matching
• Prototype overview

• Specifications language

• Automata Modulo Theory

• On-the-Fly Model Checking with Decision Procedure

� Conclusions

2Nataliia Bielova

Motivation

� Mobile devices are increasingly popular and
powerful

� Lack of applications for mobile devices

� Problems of current model based on trust
relationship: mobile code is accepted if it is
digitally signed by a trusted party
• Signature can be either rejected or accepted

• There is no semantic attached to the signature

3Nataliia Bielova

Security by Contract
Key Concepts

� The key idea: (Dragoni et al., EuroPKI’07)
• the digital signature should not just certify the origin of the code but rather

bind together the code with a contract

• Model-Carrying Code(Sekar et al.)
� captures the security-relevant behavior of code

� BUT finite-state automata

• Design-by-contract (Meyer)

� Contract carried by application:
• Claimed Security behavior of application;

• (Security) interactions with its host platform

Example: The application only uses HTTPS network connections

� Policy specified by a platform:
• Desired Security behavior of application

Example: The application should use only high-level (HTTP, HTTPS) network
connections

4Nataliia Bielova

Security-by-Contract workflow

� One of the key problems in the overall security-by-

contract workflow is the contract-policy matching issue.

5

Tough luckTough luckTough luckTough luck

Nataliia Bielova

Contribution
� The algorithms presented:

• meta-level algorithm (Dragoni et al. EuroPKI’07)

• mathematical structure for algorithm to do the matching
(Massacci & Siahaan, NordSec’07)

� Does it work in practice?

� Our main contribution of this paper is a proof of
concept that shows that contract/policy matching is
practical.

6Nataliia Bielova

Language of contract/policy
� ConSpec – automata-based language

� The specifications in ConSpec is suitable for all phases of
Security-By-Contract lifecycle
• Contract / Policy Matching

• Monitor In-lining

� Contract and Policy are mapped to the specific automata
representation

� Matching = Language inclusion
• all possible traces claimed by mobile code (contract automaton)

⊆ all traces allowed by platform (policy automaton)

7Nataliia Bielova

What kind of automaton?

� We need “infinite” edges to describe policies

� This is not very practical!

8

CONTRACT:
The application only uses
HTTPS network connections

Abbreviations for JAVA
APIs:
joc = io.Connector.open(url)

Nataliia Bielova

Automata Modulo Theory (AMT)

� AMT
• Finite state automata with “infinite” edges

• BUT Finitely represented with Expressions:
p = io.Connector.open(url) &&

(url.startsWith(”http://”) || url.startsWith(”https://”))

� Matching = Language inclusion can be reduced to an
emptiness test:

� LAutC ⊆ LAutP ⊆ LAutC ∩ LNEG AutP = ∅

� Search for counterexamples:
� Path allowed by contract but NOT allowed by policy

9Nataliia Bielova

Automata Modulo Theory (AMT)
examples

� Abbreviations for JAVA APIs: joc = io.Connector.open(url)

p(url) = url.startsWith(”http://”)

s(url) = url.startsWith(”https://”)

10

CONTRACT:
The application only uses HTTPS
network connections

Automaton:

POLICY:
The application uses only high-level
(HTTP, HTTPS) network connections

Negated automaton:

Nataliia Bielova

Architecture of Matching
Prototype

11

Off-line: mapping to
automaton –
expensive operation
complementation –
for optimization
On-line: On-The-
Fly algorithm

Nataliia Bielova

On-the-Fly Model Checking

� The search space for counterexample (a trace that satisfies the

Contract and violates the Policy)

12

On-the-Fly Algorithm with
decision procedure for SMT
Interaction with the solver of
math expression NuSMV
for satisfiability checks.

(io.Connector.open(url) /\ !url.startsWith(”https:/ /”))/\
(io.Connector.open(url) /\
(url.startsWith(”http://”) \/ url.startsWith(”https ://”)))

Nataliia Bielova

On-the-Fly Model Checking with
Decision Procedure

13Nataliia Bielova

Conclusions
� The main goal is to provide a concrete answer:

• given a contract that an application carries with itself and a policy that
a platform specifies, how can we check whether or not the contract is
compliant with the policy?

� A prototype implementing a matching algorithm based on a well-
defined automata theory was proposed.

� Both the theory and the Desktop prototype as well as several
illustrative examples were presented.

� Future work:
• Device version

• Richer policy mechanisms

14Nataliia Bielova

Thank you!
Questions?..

Nataliia Bielova 15

Related work

� Sandboxes limit the instructions available for use

� Code signing ensures that code originates from a

trusted source

� Security automata proscribes execution of mobile

code containing violations of the security policy

� Proof-carrying code (PCC) carries explicit proof of its

safety

� Model-carrying code (MCC) carries security-relevant

behavior of the producer mobile code

16Nataliia Bielova

Benchmark Contract and
Policies

� USE of Costly functionalities

� NETwork connectivity

� PRIvate information management

� INTeraction with other applets

Nataliia Bielova 17

Problems suit
� – SC: Number of States Contract

� – SP: Number of States Policy

� – TC: Number of Transitions Contract

� – TP: Number of Transitions Policy

18Nataliia Bielova

Running Problem Suit

� ART: Average
Runtime for 10 runs

� SV: Number of
Visited States

� TV: Number of
Visited Transitions

Nataliia Bielova 19

