
Reservation-Based Scheduling for
IRQ Threads

Luca Abeni, Nicola Manica, Luigi Palopoli

luca.abeni@unitn.it, nicola.manica@gmail.com, palopoli@dit.unitn.it

University of Trento, Trento - Italy

Reservation-Based Scheduling for IRQ Threads – p.1/20

Overview of the Talk

Introduction: problem definition

Effects of interrupt handling in vanilla Linux

Effects of interrupt handling on Preempt-RT
Some problems are solved...
...But some problems are still there!

We’ve got to look beyond fixed priorities...
Reservation-based scheduling
How do CPU reservations apply to IRQ threads?
Do they allow to control the impact of interrupt
handlers
Do they allow to control the hw devices throughput?

Reservation-Based Scheduling for IRQ Threads – p.2/20

Introduction

Real-Time theory traditionally addressed problems
related to CPU allocation. . .

. . .But some real-time applications also need other
resources to execute

Example: some time-sensitive applications need to
access some hardware device respecting some
temporal constraints

Correct CPU scheduling is useless if the hardware
device is not properly served
Giving CPU time to an application is not enough if
device drivers cannot execute

Sometimes, device drivers can steal CPU time to
applications

Reservation-Based Scheduling for IRQ Threads – p.3/20

Interrupt Handling

Traditional kernels: ISRs and Bottom Halves

Have always priority over real-time applications
Can preempt real-time tasks
Can steal time to real-time tasks

RT kernels: interrupts served in dedicated threads
Linux→ Preempt-RT patch: transforms ISRs and
bottom halves in threads
Interrupt threads can have lower priorities than
real-time tasks
If real-time tasks do not need to interact with
hardware devices (they do not depend on the
interrupt threads), the problem is solved!
Problem: how to schedule the IRQ threads?

Reservation-Based Scheduling for IRQ Threads – p.4/20

Example - What to test

Effects of device handling on real-time tasks
Real-time performance: response time (affected by
the kernel latency)

Highest priority task: worst case response time =
WCET + latency

Hardware device: network card
high throughput device
controlling the workload is easy

Someone already mentioned problems with high
network load and small packets...

Interesting things happen when the system is
overloaded

Reservation-Based Scheduling for IRQ Threads – p.5/20

Example - Experimental Setup

Periodic real-time task, scheduled with high priority
A task with period 50ms and execution time around
20ms is used
The task is scheduled with the highest real-time
priority→ expected response time: around 20ms

A non real-time task receiving a lot of traffic from the
network can increase the response time of the real-time
task!!!

The netperf program is used

The netperf server is run as non real-time→ it should
not affect the real-time performance

Reservation-Based Scheduling for IRQ Threads – p.6/20

Example - Results

When using 192-bytes long UDP packets, the response
time of the periodic task goes to more than 100ms!!!

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000 120000 140000 160000

P
{r

 <
 t}

t (us)

Response Times CDF
 Standard kernel, packet size 192

Reservation-Based Scheduling for IRQ Threads – p.7/20

Solution: Preempt-RT

The Preempt-RT patch transforms Linux in a real-time
kernel. It addresses the mentioned problem by
transforming ISRs and bottom halves in threads

If an IRQ thread is scheduled with a lower priority
than a real-time task, then the real-time task’s
response time is not affected

Fixes the problem, but...
Fixed priority scheduling is not flexible enough!

Let’s see!

Reservation-Based Scheduling for IRQ Threads – p.8/20

Priority to the Real-Time Task

Low response times, low throughput (48Mbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 18000 18500 19000 19500 20000 20500

P
{r

 <
 t}

t (us)

Response Times CDF
 Standard kernel, packet size 192

Reservation-Based Scheduling for IRQ Threads – p.9/20

Priority to the IRQ Thread

High throughput (74Mbps), high response times

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100000 200000 300000 400000 500000 600000 700000 800000

P
{r

 <
 t}

t (us)

Response Times CDF
 Standard kernel, packet size 192

Reservation-Based Scheduling for IRQ Threads – p.10/20

Throughput/Latency Trade-Offs

Problem: fixed priority scheduling is not flexible enough
It only allows to say things like “the real-time task is
more important than the device driver” or “the device
driver is more important than the real-time task”
How to schedule the IRQ handlers?

We might want to say things like “give x% of the CPU
time to the device driver”, or similar

Resource Reservations!

Reservation-Based Scheduling for IRQ Threads – p.11/20

Resource Reservations

Resource Reservations→ temporal protection
Every task is allowed to use a resource for an
amount of time Qs every period T s

Accounting and Enforcement

CPU scheduling→ CPU Reservations (implemented in
Resource Kernels)

Traditional implementations→ aperiodic servers
Deferrable Server...

Here, the Constant Bandwidth Server (CBS) is used

Reservation-Based Scheduling for IRQ Threads – p.12/20

The Constant Bandwidth Server

The CBS is used, but every reservation-based
scheduler can be used

Reservations based on RM, EDF, whatever...

Basic Ideas:
budget→ decreases when the served task executes
server deadline→ assigned to served task
job arrival (wakeup)→ check if the last server
deadline can be used
budget exhausted→ deadline postponed

Server parameters:
Qi: maximum server budget
T s

i
: server period (soft relative deadline)

Reservation-Based Scheduling for IRQ Threads – p.13/20

Reservation-Based Scheduling

Two scheduling parameters (Qs, T s)

Qs/T s is the fraction of CPU time reserved to a task

T s is the ”granularity” of the allocation

Serving an IRQ thread with a (Qs, T s) reservation:
Reducing Qs/T s, the impact of interrupt handling on
real-time tasks can be reduced...
T s allows to control the “device’s responsiveness”
We have some theoretical analysis

Reservation-Based Scheduling for IRQ Threads – p.14/20

Reservations and IRQ threads

Example: RSV1 = (4, 10) for the periodic task,
RSV2 = (4, 10) for the hard IRQ, RSV3 = (1.5, 10) for the
netperf server

Throughput: 74Mbps

Worst-Case Response Time: 46ms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 32000 34000 36000 38000 40000 42000 44000 46000

P
{r

 <
 t}

t (us)

Response Times CDF
 Standard kernel, packet size 192

Reservation-Based Scheduling for IRQ Threads – p.15/20

Latency / Throughput Trade-Offs

Example: The response time can be reduced by using
RSV1 = (5, 10), RSV2 = (2, 10), RSV3 = (1, 10)

Throughput: 65Mbps; Worst-Case Response Time:
36ms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 24000 26000 28000 30000 32000 34000 36000

P
{r

 <
 t}

t (us)

Response Times CDF
 Standard kernel, packet size 192

Reservation-Based Scheduling for IRQ Threads – p.16/20

Controlling the Throughput

Example: The CBS parameters (Qs, T s) can be used to
control the network throughput

Non-overloaded system (larger UDP packets):

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
hr

ou
gh

pu
t (

M
bp

s)

Reserved fraction of CPU Q / T

Network Throughput

Reservation-Based Scheduling for IRQ Threads – p.17/20

Controlling the Network Latency - 1

Up to now we considered:
Latency / Response Time for the real-time task
Network throughput

What about network latency?
The server period T s can be used to control the
response time for network packets
Tested by looking at the ping RTT
RTT as a function of the CBS parameters

Reservation-Based Scheduling for IRQ Threads – p.18/20

Controlling the Network Latency - 2

min avg max mdev
Qs T s RTT RTT RTT RTT

1ms 3ms 0.062 0.109 16.498 0.289
2ms 6ms 0.057 0.105 36.504 0.368
3ms 9ms 0.058 0.103 38.684 0.379
4ms 12ms 0.058 0.101 50.991 0.428
5ms 15ms 0.059 0.102 50.928 0.453
6ms 18ms 0.058 0.103 52.814 0.507
7ms 21ms 0.059 0.104 79.782 0.566

Average and minimum RTT values do not depend on
T s...

But worst case values do!!!
Reservation-Based Scheduling for IRQ Threads – p.19/20

Conclusions

Device drivers (interrupt handlers) can affect the
schedulability of real-time tasks

Real-time systems allow to schedule interrupt
handlers

Problem: how to schedule the IRQ threads?
Fixed priorities are not flexible enough
Low latencies→ low device throughput
High device throughput→ high latencies

Reservation-based scheduling allows to find trade-offs
between latencies and throughput!!!

Also allows to control the device throughput /
response times

Reservation-Based Scheduling for IRQ Threads – p.20/20

	Overview of the Talk
	Introduction
	Interrupt Handling
	Example - What to test
	Example - Experimental Setup
	Example - Results
	Solution: Preempt-RT
	Priority to the Real-Time Task
	Priority to the IRQ Thread
	Throughput/Latency Trade-Offs
	Resource Reservations
	The Constant Bandwidth Server
	Reservation-Based Scheduling
	Reservations and IRQ threads
	Latency / Throughput Trade-Offs
	Controlling the Throughput
	Controlling the Network Latency - 1
	Controlling the Network Latency - 2
	Conclusions

