- N

Reservation-Based Scheduling for
IRQ Threads

Luca Abeni, Nicola Manica, Luigi Palopoli

| uca. abeni @nitn.it, nicola.nmanica@mnail.com palopoli@it.unitn.it

University of Trento, Trento - Italy

o |

Reservation-Based Scheduling for IRQ Threads — p.1/20

-

Overview of the Talk

Introduction: problem definition
Effects of interrupt handling in vanilla Linux

o Effects of interrupt handling on Preempt-RT
s Some problems are solved...
s ...But some problems are still there!

We've got to look beyond fixed priorities...
» Reservation-based scheduling
s How do CPU reservations apply to IRQ threads?

s Do they allow to control the impact of interrupt
handlers

» Do they allow to control the hw devices throughput?

|

Reservation-Based Scheduling for IRQ Threads — p.2/20

| ntroduction

-

Real-Time theory traditionally addressed problems
related to CPU allocation. ..

...But some real-time applications also need other
resources to execute

Example: some time-sensitive applications need to
access some hardware device respecting some
temporal constraints

s Correct CPU scheduling is useless if the hardware
device is not properly served

s Giving CPU time to an application is not enough if
device drivers cannot execute

Sometimes, device drivers can steal CPU time to
applications J

Reservation-Based Scheduling for IRQ Threads — p.3/20

Interrupt Handling

- N

® Traditional kernels: ISRs and Bottom Halves

Have always priority over real-time applications
s Can preempt real-time tasks
» Can steal time to real-time tasks

RT kernels: interrupts served in dedicated threads

s Linux — Preempt-RT patch: transforms ISRs and
bottom halves In threads

s Interrupt threads can have lower priorities than
real-time tasks

s If real-time tasks do not need to interact with
hardware devices (they do not depend on the
Interrupt threads), the problem is solved!

L s Problem: how to schedule the IRQ threads? J

Reservation-Based Scheduling for IRQ Threads — p.4/20

Example - What to test

- N

o Effects of device handling on real-time tasks

» Real-time performance: response time (affected by
the kernel latency)

s Highest priority task: worst case response time =
WCET + latency

s Hardware device: network card
s high throughput device
s controlling the workload is easy

Someone already mentioned problems with high
network load and small packets...

s Interesting things happen when the system is
overloaded

o |

Reservation-Based Scheduling for IRQ Threads — p.5/20

Example - Experimental Setup
f # Periodic real-time task, scheduled with high priority T

s A task with period 50ms and execution time around
20ms IS used

» The task is scheduled with the highest real-time
priority — expected response time: around 20ms

A non real-time task receiving a lot of traffic from the

network can increase the response time of the real-time
task!!!

s The net perf program is used

The netperf server is run as non real-time — it should
not affect the real-time performance

o |

Reservation-Based Scheduling for IRQ Threads — p.6/20

-

#® When using 192-bytes long UDP packets, the response

Example - Results

-

time of the periodic task goes to more than 100ms!!!

P{r <t}

09 -

0.8 |

0.7

0.6 -

0.5

04

03

0.2 -

0.1

Response Times CDF
Standard kernel, packet size 192

20000 40000 60000 80000 100000 120000 140000 160000

t (us)
Reservation-Based Scheduling for IRQ Threads — p.7/20

Solution: Preempt-RT
-

The Preempt-RT patch transforms Linux in a real-time
kernel. It addresses the mentioned problem by
transforming ISRs and bottom halves in threads

s If an IRQ thread is scheduled with a lower priority
than a real-time task, then the real-time task’s
response time is not affected

Fixes the problem, but...
» Fixed priority scheduling is not flexible enough!

Let's see!

|

Reservation-Based Scheduling for IRQ Threads — p.8/20

Priority tothe Real-Time Task

- N

#® Low response times, low throughput (48 M bps)

Response Times CDF
Standard kernel, packet size 192

09 [

0.8 |

0.7 -

0.6 -

0.5

P{r <t}

04 -
03
0.2

0.1 -

| | | |
18000 18500 19000 19500 20000 20500
L t (us) J

Reservation-Based Scheduling for IRQ Threads — p.9/20

Priority tothe IRQ Thread

- N

High throughput (74Mbps), high response times

Response Times CDF
Standard kernel, packet size 192

0.6

05 |

04 -

03 |

P{r <t}

0.2 -

0.1 -

0

| | | | | | |
0 100000 200000 300000 400000 500000 600000 700000 800000
t (us) J

Reservation-Based Scheduling for IRQ Threads — p.10/20

Throughput/Latency Trade-Offs
- -

Problem: fixed priority scheduling is not flexible enough

s It only allows to say things like “the real-time task is
more important than the device driver” or “the device
driver is more important than the real-time task”

s How to schedule the IRQ handlers?

We might want to say things like “give =% of the CPU
time to the device driver”, or similar

® Resource Reservations!

o |

Reservation-Based Scheduling for IRQ Threads — p.11/20

Resour ce Reservations

- N

#® Resource Reservations — temporal protection

s Everytask is allowed to use a resource for an
amount of time Q° every period 7'

» Accounting and Enforcement
#® CPU scheduling — CPU Reservations (implemented in
Resource Kernels)
s Traditional implementations — aperiodic servers
s Deferrable Server...

L #® Here, the Constant Bandwidth Server (CBS) Is used J

Reservation-Based Scheduling for IRQ Threads — p.12/20

The Constant Bandwidth Server
| -

#® The CBS is used, but every reservation-based
scheduler can be used

o Reservations based on RM, EDF, whatever...

Basic ldeas:
s budget — decreases when the served task executes
s server deadline — assigned to served task

s job arrival (wakeup) — check if the last server
deadline can be used

s budget exhausted — deadline postponed

® Server parameters:
s (Q;: maximum server budget
s T7: server period (soft relative deadline)

o |

Reservation-Based Scheduling for IRQ Threads — p.13/20

Reservation-Based Scheduling
f # Two scheduling parameters (Q*,T7) T
o ()°/T7 is the fraction of CPU time reserved to a task

7T7% Is the "granularity” of the allocation

Serving an IRQ thread with a (Q*, T°) reservation:

» Reducing Q°/T?, the impact of interrupt handling on
real-time tasks can be reduced...

s T7 allows to control the “device’s responsiveness”
s We have some theoretical analysis

o |

Reservation-Based Scheduling for IRQ Threads — p.14/20

-

Reservations and |RQ threads

-

o Example: RSV; = (4, 10) for the periodic task,
RSV5 = (4,10) for the hard IRQ, RSV3 = (1.5,10) for the
netperf server

s Throughput: 74Mbps
» Worst-Case Response Time: 46ms

Response Times CDF
Standard kernel, packet size 192

1

09 |

0.8 |

0.7

0.6

05

P{r<

04
03
0.2
0.1 B
| L . . .
32000 34000 36000 38000 40000 42000 44000 46000

t (us)

Reservation-Based Scheduling for IRQ Threads — p.15/20

L atency / Throughput Trade-Offs

- N

Example: The response time can be reduced by using
RSVy = (5,10), RSV, = (2,10), RSV3 = (1, 10)
s Throughput: 65Mbps; Worst-Case Response Time:
36ms

Response Times CDF

0
00000000000000000000000000000000000

Reservation-Based Scheduling for IRQ Threads — p.16/20

Controlling the Throughput
- -

#® Example: The CBS parameters (Q°,7°) can be used to
control the network throughput

Non-overloaded system (larger UDP packets):

Network Throughput ——
920
80 -
70
& 60}
Q
>3
3 50t
<
(*)]
>
o
£ 40 +
|_
30
20
10

0 | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Reserved fraction of CPUQ /T

Reservation-Based Scheduling for IRQ Threads — p.17/20

Controlling the Network Latency - 1
f # Up to now we considered: T
s Latency / Response Time for the real-time task

» Network throughput
What about network latency?

s The server period 7 can be used to control the
response time for network packets

» Tested by looking at the pi ng RTT
s RTT as a function of the CBS parameters

o |

Reservation-Based Scheduling for IRQ Threads — p.18/20

Controlling the Network Latency - 2
- -

min avg max | mdev
Q° T° | RTT | RTT RTT | RTT

Ims | 3ms | 0.062 | 0.109 | 16.498 | 0.289
2ms | 6ms | 0.057 | 0.105 | 36.504 | 0.368
3ms | 9ms | 0.058 | 0.103 | 38.684 | 0.379
4ms | 12ms | 0.058 | 0.101 | 50.991 | 0.428
bms | 15ms | 0.059 | 0.102 | 50.928 | 0.453
oms | 18ms | 0.058 | 0.103 | 52.814 | 0.507
™ms | 21ms | 0.059 | 0.104 | 79.782 | 0.566

Average and minimum RTT values do not depend on
T°...

L # But worst case values do!!! J

Reservation-Based Scheduling for IRQ Threads — p.19/20

o

Conclusions

-

Device drivers (interrupt handlers) can affect the
schedulability of real-time tasks

» Real-time systems allow to schedule interrupt
handlers

Problem: how to schedule the IRQ threads?

» Fixed priorities are not flexible enough

s Low latencies — low device throughput

» High device throughput — high latencies

Reservation-based scheduling allows to find trade-offs

between latencies and throughput!!!

s Also allows to control the device throughput /
response times

|

Reservation-Based Scheduling for IRQ Threads — p.20/20

	Overview of the Talk
	Introduction
	Interrupt Handling
	Example - What to test
	Example - Experimental Setup
	Example - Results
	Solution: Preempt-RT
	Priority to the Real-Time Task
	Priority to the IRQ Thread
	Throughput/Latency Trade-Offs
	Resource Reservations
	The Constant Bandwidth Server
	Reservation-Based Scheduling
	Reservations and IRQ threads
	Latency / Throughput Trade-Offs
	Controlling the Throughput
	Controlling the Network Latency - 1
	Controlling the Network Latency - 2
	Conclusions

