
CM

Understanding Non-Blocking Atomic Commitment

Özalp Babaoğlu Sam Toueg

Technical Report UBLCS-93-2

January 1993

Laboratory for Computer Science

University of Bologna

Piazza di Porta S. Donato, 5
40127 Bologna (Italy)

The University of Bologna Laboratory for Computer Science Research Technical Reports are available
via anonymous FTP from the area ftp.cs.unibo.it:/pub/TR/UBLCS in compressed PostScript
format. Abstracts are available from the same host in the directory /pub/TR/ABSTRACTS in plain
text format. All local authors can be reached via e-mail at the address last-name@cs.unibo.it.

UBLCS Technical Report Series

92-1 Mapping Parallel Computations onto Distributed Systems in Paralex, by Ö. Babaoğlu, L. Alvisi, A.
Amoroso and R. Davoli, January 1992.

92-2 Parallel Scientific Computing in Distributed Systems: The Paralex Approach, by L. Alvisi, A.
Amoroso, Ö. Babaoğlu, A. Baronio, R. Davoli and L. A. Giachini, February 1992.

92-3 Run-time Support for Dynamic Load Balancing and Debugging in Paralex, by Ö. Babaoğlu, L.
Alvisi, S. Amoroso, R. Davoli, L. A. Giachini, September 1992.

92-4 Paralex: An Environment for Parallel Programming in Distributed Systems, by Ö. Babaoğlu, L.
Alvisi, S. Amoroso, R. Davoli, L. A. Giachini, October 1992.

93-1 Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanism, by Ö.
Babaoğlu and K. Marzullo, January 1993.

93-2 Understanding Non-Blocking Atomic Commitment, by Ö. Babaoğlu and S. Toueg, January 1993.

Understanding Non-Blocking Atomic Commitment

Özalp Babaoğlu1 Sam Toueg2

Technical Report UBLCS-93-2

January 1993

Abstract

In distributed database systems, an atomic commitment protocol ensures that transactions termi-
nate consistently at all participating sites even in the presence of failures. An atomic commitment
protocol is said to be non-blocking if it permits transaction termination to proceed at correct partic-
ipants despite failures of others. Protocols that have this property are desirable since they limit the
time intervals during which transactions may be holding valuable resources. In this paper, we show
how non-blocking atomic commitment protocols can be obtained through slight modifications of the
well-known Two-Phase Commit (2PC) protocol, which is known to be blocking. Our approach is
modular in the sense that both the protocols and their proofs of correctness are obtained by plugging
in the appropriate reliable broadcast algorithms as the basic communication primitives in the original
2PC protocol. The resulting protocols are not only conceptually simple, they are also efficient in terms
of time and message complexity.

1. Department of Mathematics, University of Bologna,Piazza Porta S. Donato 5,40127 Bologna Italy. This author
was supported in part by the Commission of European Communities under ESPRIT Programme Basic Research
Project Number 6360 (BROADCAST), the United States Office of Naval Research under contract N00014-91-J-
1219, IBM Corporation, Hewlett-Packard of Italy and the Italian Ministry of University, Research and Technology.
2. Department of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, New York 14583 USA.
This author was supported in part by the National Science Foundation under Grant Number CCR-9102231,
IBM Corporation (Endicott Programming Laboratory) and the Italian National Research Council (CNR-GNIM)
through a visiting professor grant.

1

1 Introduction

1 Introduction

There are two principal reasons for structuring a data management system as a distributed
system rather than a centralized one. First, the data being managed may be inherently
distributed, as in the customer accounts database of a bank with multiple branches. Second,
the data may be distributed to achieve failure independence for increased availability, as in
a replicated file system.

When transactions update data in a distributed system, partial failures can lead to
inconsistent results. For instance, in the banking example above, a transaction to transfer
money between two accounts at different branches may result in the credit operation without
performing the corresponding debit. In the replicated file system, a write operation may
cause two replicas of the same file to diverge. It is clear that termination of a transaction that
updates distributed data has to be coordinated among its participants if data consistency is
to be preserved even in the presence of failures. The coordination that is required is specified
by the atomic commitment problem [14].

Among the solutions proposed for this problem, perhaps the best known is the Two-
Phase Commit (2PC) protocol [11,21]. While 2PC indeed solves the atomic commitment
problem, it may result in blocking executions where a correct participant is prevented from
terminating the transaction due to inopportune failures in other parts of the system [3].
During these blocking periods, correct participants will also be prevented from relinquishing
valuable system resources that they may have acquired for exclusive use on behalf of the
transaction. Thus, it is desirable to devise non-blocking solutions to the atomic commitment
problem that permit correct participants to proceed and terminate the transaction under as
many failure scenarios as possible.

It is well known that distributed systems with unreliable communication do not admit
non-blocking solutions to the atomic commitment problem [11,25,16]. If communication
failures are excluded, non-blocking protocols do exist [25,6,19,7,13] and are typified by the
Three-Phase Commit (3PC) protocol of Skeen [25]. These non-blocking protocols are not only
inherently more costly (in time) than their blocking counterparts [7], they are also much more
complex to program and understand. For example, to prevent blocking, correct participants
may need to communicate with each other and consider a large number of possible system
states in order to proceed with the correct decision towards termination. Furthermore,
protocols such as 3PC invoke sub-protocols for electing a leader [9] and determining the last
process to fail [26], which themselves are complex and costly.

In this paper, we develop a family of non-blocking protocols to solve the atomic com-
mitment problem. All of our protocols share the basic structure of 2PC and differ only in the
details of the communication primitive they use to broadcast certain messages. By exploiting
the properties of these broadcast primitives, we are able to achieve non-blocking without
adding any complexity beyond that of 2PC. We complete this “compositional methodol-
ogy” of protocol design by demonstrating algorithms that achieve the properties of the
hypothesized broadcast primitives. These algorithms turn out to be variants of uniform
reliable broadcast [23,4]. The modular approach we advocate results in non-blocking atomic
commitment protocols that are easy to prove and understand. This conceptual economy is
obtained without any performance penalties — the best of our protocols is as efficient as
2PC. Furthermore, our solutions are complete in the sense that no additional sub-protocols
are needed to put them to practice.

In the next two sections, we define the distributed system model and the context

UBLCS-93-2 2

2 System Model

for distributed transaction execution. Within this environment, the requirement of global
consistency despite failures is formally specified as the atomic commitment problem in Sec-
tion 4. A generic protocol based on Two-Phase Commit for solving the atomic commitment
problem is described in Section 5 and serves as the generator for our future protocols. The
first of a series of broadcast primitives we consider is defined through a collection of prop-
erties in given Section 6. In the same section, we illustrate a simple algorithm that achieves
the required properties. Plugging in this algorithm to the generic protocol of the previous
section results in the classical implementation of 2PC, which is proven correct in Section 7.
In Section 8, we consider the issue of blocking and refine the atomic commitment problem
specification to include the non-blocking property. Section 9 contains the key result of the
paper where we show that if the simple broadcast primitive specification of Section 6 is
extended to include a Uniform Agreement property, then any algorithm that achieves this
broadcast can be plugged into the generic protocol to obtain a non-blocking atomic com-
mitment protocol. An algorithm that indeed achieves this broadcast is given in Section 10.
The issue of recovery from failures is the subject of Section 11. The performance analysis
carried out in Section 12 of our basic non-blocking protocol leads to the two new broadcast
algorithms of Sections 13.1 and 13.2 that improve on the message complexity and time delay,
respectively. Related work, communication failures and possible extensions of our results
are discussed in Sections 14 and 15 before concluding the paper. Appendix A presents a
further optimization of the basic non-blocking protocol through yet another broadcast prim-
itive that exploits a priori knowledge about the latest time at which imminent broadcasts may
begin. Appendix B contains simple adjustments that can be made to the timeout constants
so that our protocols continue to work with rate-bounded, unsynchronized local clocks.

2 System Model

We follow closely the model and terminology used in [3]. The distributed system consists of
a set of sites interconnected through a communication network. Sites support computation
in the form of processes that communicate with each other by exchanging messages. We
assume a synchronous model of computation in the sense that bounds exists (and are known)
for both relative speeds of processes and message delays.

At any given time, a process may be either operational or down. While operational,
it follows exactly the actions specified by the program it is executing. Failures may cause
operational processes to go down, after which they take no actions at all. This operational-to-
down transition due to failures is called a crash. It is also possible for a process that is down
to become operational again after executing a recovery protocol. When a process crashes, all
of its local state is lost except for what it wrote in stable storage [21]. During recovery, the only
information available to a process is the contents of this stable storage. A process is correct
if it has never crashed; otherwise it is faulty.3

While processes may crash, we assume that communication is reliable. Furthermore,
each message is received within � time units (as measured in real-time) after being sent. This
parameter � includes not only the time required to transport the message by the network,
but also the delays incurred in processing it at the sending and receiving processes. For the
sake of exposition, we initially assume that every process has a local clock that advances at
the same rate as real-time. As discussed in Appendix B, our results can be easily extended to

3. The periods of interest for these definitions are the duration of the atomic commitment protocol execution.

UBLCS-93-2 3

3 Distributed Transactions

% Some participant (the invoker) executes:
1 send [T START: transaction, �c, participants] to all participants

% All participants (including the invoker) execute:
2 upon (receipt of [T START: transaction, �c, participants])
3 Cknow := local clock
4 % Perform operations requested by transaction
5 if (willing and able to make updates permanent) then
6 vote := YES

7 else vote := NO

% Decide COMMIT or ABORT according to atomic commitment protocol
8 atomic commitment(transaction, participants)

Figure 1. Distributed Transaction Execution Schema

systems where local clocks are not perfect but their rate of drift from real-time is bounded.
Each local clock is only used to measure time intervals. Thus, we do not need to assume that
clocks are synchronized with each other [18].

Given the above model and the assumption that communication is failure free, time-
outs can be used to detect process failures. In particular, if a process does not receive a
response to a message within 2� time units (as measured on its local clock) after sending it,
it can conclude that the destination process is faulty (i.e., it has crashed at least once).

3 Distributed Transactions

Informally, a distributed transaction (henceforth called a “transaction”) is the execution of a
program accessing shared data at multiple sites [21]. The isolated execution of a transaction
in the absence of failures is assumed to transform the data from one consistent state to
another. Logical isolation in the presence of concurrent transactions is typically formalized
as a serializable execution [24] and is achieved through a concurrency control protocol [2]. In this
paper, we focus on failure atomicity — preserving data consistency in the presence of failures
— which is orthogonal to serializability.

For each transaction, the set of processes that perform updates on its behalf are called
participants. Each participant updates data that are local to it. To conclude the transaction,
participants must coordinate their actions so that either all or none of the updates to the data
are made permanent. We consider only the so-called centralized version of this coordination
where one of the participants acts as the coordinator in order to orchestrate the actions. We
assume that each transaction is assigned a unique global identifier. For sake of simplicity,
we will consider only one transaction at a time and omit explicit transaction identifiers from
our notation. Obviously, in a system with multiple concurrent transactions, all messages
and variables will have to be tagged with identifiers so as to be able to distinguish between
multiple instances.

Figure 1 illustrates the schema governing distributed transaction execution. It will
serve as the context for specifying and solving the atomic commitment problem. The
transaction begins at a single participant called the invoker. The invoker distributes the

UBLCS-93-2 4

3 Distributed Transactions

transaction to its participants by sending them T START messages containing a description of
the transaction operations and the full list of participants. As soon as a participant receives
a T START message (in line 2 of Figure 1) it is said to “know” about the transaction. The
local time at which this event happens is recorded in the variable Cknow for future use. The
invoker computes an upper bound for the interval of time that may elapse from the instant
any participant knows about the transaction to the time the coordinator (not necessarily the
same participant as the invoker) actively begins concluding it. This interval, denoted �c, is
also included in the T START message.

After a participant performs the operations requested by the transaction, it uses a
variable vote to indicate whether it can install the updates. A YES vote indicates that the local
execution was successful and that the participant is willing and able to make the updates
to the data permanent. In other words, the updates have been written to stable storage so
that they can be installed as the new data values even if there are future failures. A NO vote
indicates that for some reason (e.g., storage failure, deadlock, concurrency control conflict,
etc.) the participant is unable to install the results of the transaction as the new permanent
data values. Finally, participants engage in the coordination step to decide the outcome of
the transaction by executing an atomic commitment protocol.

We are not interested in the details of how a participant is chosen to become the
coordinator of a transaction. All we require is that each transaction is assigned a coordinator
in a manner satisfying the following three axioms:
AX1: At most one participant will assume the role of coordinator.
AX2: If no failures occur, one participant will assume the role of coordinator.
AX3: There exists a constant �c such that no participant assumes the role of coordinator

more than �c real-time units after the beginning of the transaction.
Axioms AX1 and AX2 are simply statements about the syntactic well-formedness of

transactions — the program should guarantee that no more than one participant ever reaches
the code for the coordinator and, in the absence of failures, indeed one participant should
execute this code. Axiom AX3 allows us to bound the duration of a transaction even when
its coordinator crashes before taking any steps.

At this point, we describe the programming notation used in this paper. As can
be seen in Figure 1, we use a pseudo-Pascal syntax with the usual sequential control flow
structures. We denote concurrent activities as tasks separated by “//” enclosed within cobe-
gin and coend. Communication is accomplished through the send and receive statements
by supplying the message and the destination/source process name. In our protocols, all
messages carry type identifiers, written in SMALL-CAPS, within the message body. We use
“send m to G” as a shorthand for sending message m one at a time to each process that is
a member of the set G. Note that we make no assumptions about the indivisibility of this
operation. In particular, the sender may crash after having sent to some but not all members
of the destination set. The receiver of a message may synchronize its execution with the
receipt of a message in one of two ways. The wait-for statement is used to block the receiver
until the receipt of a particular message. If the message may arrive at unspecified times and
should be received without blocking the receiver, then the upon statement is appropriate.
Actually, both the wait-for and upon statements can be applied to arbitrary asynchronous
events and not just to message receipts. When the specified event occurs, execution proceeds
with the body of the respective statement. In case of a blocking wait, an optional timeout
may be set to trigger at a particular (local) time using the set-timeout-to statement. The
timeout value in effect is that set by the most recent set-timeout-to before the execution of a

UBLCS-93-2 5

4 The Atomic Commitment Problem

wait-for statement. If the event being waited for does not occur by the specified time, then
the on-timeout clause of the wait-for statement is executed rather than its body. The body
and the timeout clause of wait-for are mutually exclusive.

4 The Atomic Commitment Problem

The atomic commitment problem is concerned with bringing a transaction to a globally consis-
tent conclusion despite failures. For each participant, its goal is to select among two possible
decision values — COMMIT and ABORT. Deciding COMMIT indicates that all participants will
make the transaction’s updates permanent, while deciding ABORT indicates that none will.
The individual decisions taken are irreversible. A COMMIT decision is based on unanimity
of YES votes among the participants.

We formalize these notions as a set of properties that, together, define the atomic
commitment problem:
AC1: All participants that decide reach the same decision.
AC2: If any participant decides COMMIT, then all participants must have voted YES.
AC3: If all participants vote YES and no failures occur, then all participants decide COMMIT.
AC4: Each participant decides at most once (that is, a decision is irreversible).

A protocol that satisfies all four of the above properties is called an atomic commitment
protocol.

5 A Generic Atomic Commitment Protocol

Figure 2 illustrates a generic atomic commitment protocol, called ACP, that has the same
structure as 2PC. It is generic in the sense that the details of broadcast used by the coordinator
to disseminate the decision have not been specified. We will use this protocol to obtain others
(including 2PC) by plugging in appropriate instances of the broadcast primitive.

The protocol consists of two concurrent tasks, one executed only by the coordinator
(task 1) and the other executed by all participants, including the coordinator (task 2). The
coordinator starts out by collecting the votes of participants by sending them VOTE REQUEST

messages. When a participant receives such a message, it “votes” by sending the value of
local variable vote to the coordinator. Phase 1 ends when the coordinator has votes from all
participants. If a YES vote was received from all participants, then the decision is COMMIT;
otherwise it is ABORT. In Phase 2, the coordinator disseminates the decision to all participants.
If a participant voted NO in Phase 1, it can unilaterally decide ABORT. Otherwise it has to wait
for the decision to arrive from the coordinator. If no decision arrives at a participant from the
coordinator, it engages in a termination protocol in an attempt to conclude the transaction
with the help of others. If a participant has not received a VOTE REQUEST by the appropriate
time, it can safely assume that the coordinator has crashed and unilaterally decide ABORT.
The choice of the timeout periods will be discussed when we prove the correctness of specific
instances of this generic protocol.

6 A Simple Broadcast Primitive: SB

A key step in the generic protocol of Figure 2 is the dissemination of the decision value to all
participants by the coordinator in Phase 2. We call the primitive to achieve this dissemination

UBLCS-93-2 6

6 A Simple Broadcast Primitive: SB

procedure atomic commitment(transaction, participants)
cobegin
% Task 1: Executed by the coordinator

1 send [VOTE REQUEST] to all participants % Including the coordinator
2 set-timeout-to local clock + 2�
3 wait-for (receipt of [VOTE: vote] messages from all participants)
4 if (all votes are YES) then
5 broadcast (COMMIT, participants)
6 else broadcast (ABORT, participants)
7 on-timeout
8 broadcast (ABORT, participants)

//

9 % Task 2: Executed by all participants (including the coordinator)
10 set-timeout-to Cknow +�c + �
11 wait-for (receipt of [VOTE REQUEST] from coordinator)
12 send [VOTE: vote] to coordinator
13 if (vote = NO) then
14 decide ABORT

15 else
16 set-timeout-to Cknow +�c + 2� +�b
17 wait-for (delivery of decision message)
18 if (decision message is ABORT) then
19 decide ABORT

20 else decide COMMIT

21 on-timeout
22 decide according to termination protocol()
23 on-timeout
24 decide ABORT

coend
end

Figure 2. ACP: A Generic Atomic Commitment Protocol

UBLCS-93-2 7

7 The Two-Phase Commit Protocol: ACP-SB

procedure broadcast(m, G)

% Broadcaster executes:
send [DLV: m] to all processes in G
deliver m

% Process p 6= broadcaster in G executes:
upon (receipt of [DLV: m])

deliver m
end

Figure 3. SB1: A Simple Broadcast Algorithm

a broadcast which has a corresponding action at the destination called deliver. It is clear
that broadcast and deliver will be implemented using multiple send and receive operations
that the network provides.

The simplest way for a process p to broadcast a message m to the members of a setG is for p to sequentially send m to each process in G. When a process in G receives such a
message, it just delivers it.

It is easy to see that this simple broadcast algorithm, called SB1 (Figure 3), satisfies
the following properties (with �b = �):
B1 (Validity): If a correct process broadcasts a message m, then all correct processes in G

eventually deliver m.
B2 (Integrity): For any message m, each process in G delivers m at most once, and only if

some process actually broadcasts m.
B3 (�b-Timeliness): There exists a known constant �b such that if the broadcast of m is

initiated at real-time t, no process in G delivers m after real-time t +�b.4
We assume that each broadcast message m is unique. This could be easily achieved

by tagging messages with the name of the broadcaster and a sequence number.
Any broadcast primitive that satisfies the above three properties is called a Simple

Broadcast (SB). The primitive allows any process to broadcast any message at any time. In
other words, there is no a priori knowledge of the broadcast times or of the identity of the
broadcasters. Note that SB is not reliable — if the broadcaster crashes in the middle of
a Simple Broadcast, it is possible for some correct processes to deliver the broadcaster’s
message while other correct processes never do so.

7 The Two-Phase Commit Protocol: ACP-SB

Let us first consider an instantiation of the generic protocol ACP obtained by plugging in
any SB algorithm (such as SB1) as the broadcast primitive in Figure 2. The resulting protocol

4. Note that Integrity prevents even faulty processes from delivering a message more than once or “out of thin
air”. Similarly, Timeliness prevents faulty processes from delivering m after real-time t+ �b. Since these two
properties impose restrictions on message deliveries not only by correct processes, but also by faulty ones, they
are called “ Uniform Integrity and Uniform �b-Timeliness” in the terminology of [15]. In what follows, we omit
the qualifier “Uniform” for the sake of brevity.

UBLCS-93-2 8

7 The Two-Phase Commit Protocol: ACP-SB

is called ACP-SB and corresponds exactly to the classical 2PC protocol. Since this protocol
forms the basis for all others to come, we give a detailed proof of its correctness. Large
portions of this proof will remain valid also for other protocols we develop based on ACP.
For the purposes of this proof, we assume that the termination protocol, which is invoked
if a timeout occurs while waiting for the decision from the coordinator, simply “blocks” the
participant. We do this without any loss of generality since the protocols developed later
will be able to decide unilaterally without needing a termination protocol.

Theorem 1 Protocol ACP-SB achieves properties AC1–AC4 of the atomic commitment problem.

Proof: We prove the properties in the order AC2, AC3, AC4 and AC1.
AC2: If any participant decides COMMIT, then all participants must have voted YES.
Assume some participant decides COMMIT. This can only occur in line 20, and the

participant must have delivered a COMMIT message in line 17. By the Integrity property of
the broadcast, COMMIT was broadcast by some participant. This can only occur at line 5.
Thus the coordinator must have received votes from all participants and all these votes were
YES.

AC3: If all participants vote YES and no failures occur, then all participants decide COMMIT.
Suppose all participants vote YES and no failures occur. Let tstart be the real-time

at which the transaction begins (this is the time at which some participant sends a T START

message). From AX2 and AX3, one participant assumes the role of coordinator by real-timetstart + �c. This coordinator immediately sends VOTE REQUEST messages which arrive bytstart + �c + �. Note that in line 11 each participant waits for this VOTE REQUEST, with a
timeout set to trigger �c + � time units after the real-time, tknow , at which it first learned
about the transaction (in line 2 of Figure 1)5. In other words, this timeout is set to trigger
at real-time tknow + �c + �. Since tstart � tknow , each participant receives the VOTE REQUEST

message it was waiting for, before the timeout is ever triggered. Thus, all participants send
their YES votes to the coordinator. These votes arrive at the coordinator within 2� time units of
its sending the VOTE REQUEST. Therefore, the timeout associated with the coordinator’s wait
for votes in line 3 never triggers. So, the coordinator receives YES votes from all participants
and broadcasts a COMMIT message to all participants by real-time tstart +�c + 2�. Note that
in line 17, all correct participants are waiting for the delivery of this decision message, with
a timeout set to trigger at real-time tknow +�c + 2� +�b. By the Validity and �b-Timeliness
properties of the broadcast, every participant delivers the COMMIT message by real-timetstart +�c + 2� +�b, before this timeout is triggered. Thus all participants decide COMMIT.

AC4: Each participant decides at most once.
From the structure of protocol ACP-SB, each participant decides at most once while

executing Task 2.
AC1: All participants that decide reach the same decision.
For contradiction, suppose participant p decides COMMIT and participant q decides

ABORT. By AC4, p 6= q. Participant q can decide ABORT only in lines 14, 19 and 24. By the
proof of AC2, since p decides COMMIT, the coordinator must have received votes from all
participants, including q, and all these votes were YES. Since q sent a YES vote, it could not
have decided ABORT in lines 14 or 24. So it must have decided ABORT in line 19, following the
delivery of an ABORT message. By the Integrity property of the broadcast, some participant

5. Note that the variable Cknow records the local time at which this event occurs.

UBLCS-93-2 9

8 The Non-Blocking Atomic Commitment Problemc0 must have broadcast this message. From the protocol it is clear that c0 assumed the role
of coordinator. Since by the protocol, a coordinator may broadcast at most one decision
message, c must be different from c0. This contradicts axiom AX1, stipulating that each
transaction has at most one coordinator. 2
8 The Non-Blocking Atomic Commitment Problem

Recall that in protocol ACP-SB, if a participant times out waiting for the decision from the
coordinator, it invokes a termination protocol. Informally, this protocol will try to contact
some other participant that has already decided or one that has not yet voted. If it succeeds,
this will lead to a decision. There will, however, be failure scenarios for which no termination
protocol can lead to a decision [11,25].

For example, consider a ACP-SB execution where the coordinator crashes during the
broadcast of the decision (in Phase 2 of Task 1). Suppose that:� all faulty participants deliver the decision and then crash, and� all correct participants have previously voted YES (in Phase 1 of Task 1), and they do

not deliver the decision.
If faulty participants do not recover, no termination protocol can lead correct partici-

pants to decide: Any such decision may contradict the decision made by a participant that
crashed. We say that an atomic commitment protocol is blocking if it admits executions in
which correct participants cannot decide. The scenario above shows that ACP-SB is blocking.

As we have argued in the Introduction, blocking atomic commitment protocols are
undesirable since they result in poor system resource utilization. An atomic commitment
protocol is said to be non-blocking if it satisfies the following property in addition to AC1–AC4:
AC5: Every correct participant that executes the atomic commitment protocol eventually

decides.
Note that the non-blocking property of atomic commitment protocol is stated in terms

of correct and not operational participants. This is because an operational participant may
have crashed and then recovered, in which case, decision is to be achieved through the
recovery protocol rather than the commitment protocol. Furthermore, the property requires
only those participants that execute the atomic commitment protocol to eventually decide.
From the distributed transaction execution schema of Figure 1, there may be others that do
not execute the protocol because they do not know about the transaction. For them, we do
not insist on a decision since they are not holding any resources on behalf of the transaction.

9 The Non-Blocking Atomic Commitment Protocol: ACP-UTRB

We now show that protocol ACP-SB can be made non-blocking by replacing SB with a
stronger broadcast primitive. Recall that ACP-SB leads to blocking only if the coordinator
crashes while broadcasting a decision and this decision is delivered only by participants
that later crash. Thus blocking can occur because SB (the broadcast used to disseminate
the decision) allows faulty processes to deliver a message that is never delivered by correct
processes. This undesirable scenario is prevented by using Uniform Timed Reliable Broadcast
(UTRB), a broadcast primitive that requires
B4 (Uniform Agreement): If any process (correct or not) in G delivers a message m, then all

correct processes in G eventually deliver m
UBLCS-93-2 10

9 The Non-Blocking Atomic Commitment Protocol: ACP-UTRB

procedure atomic commitment(transaction, participants)
cobegin
% Task 1: Executed by the coordinator

1 send [VOTE REQUEST] to all participants % Including the coordinator
2 set-timeout-to local clock + 2�
3 wait-for (receipt of [VOTE: vote] messages from all participants)
4 if (all votes are YES) then
5 broadcast (COMMIT, participants) % Using a UTRB
6 else broadcast (ABORT, participants) % Using a UTRB
7 on-timeout
8 broadcast (ABORT, participants) % Using a UTRB

//

9 % Task 2: Executed by all participants (including the coordinator)
10 set-timeout-to Cknow +�c + �
11 wait-for (receipt of [VOTE REQUEST] from coordinator)
12 send [VOTE: vote] to coordinator
13 if (vote = NO) then
14 decide ABORT

15 else
16 set-timeout-to Cknow +�c + 2� +�b
17 wait-for (delivery of decision message)
18 if (decision message is ABORT) then
19 decide ABORT

20 else decide COMMIT

21 on-timeout
22 decide ABORT % Replaces termination protocol
23 on-timeout
24 decide ABORT

coend
end

Figure 4. ACP-UTRB: A Non-Blocking Atomic Commitment Protocol Based on UTRB

UBLCS-93-2 11

9 The Non-Blocking Atomic Commitment Protocol: ACP-UTRB

in addition to the Validity, Integrity, and �b-Timeliness of SB.6 Note that with respect to
message delivery, property B4 requires agreement among all processes, and not just those
that are correct. It is this uniformity aspect of agreement that makes blocking scenarios
impossible.

Figure 4 illustrates ACP-UTRB, a non-blocking atomic commitment protocol based
on UTRB. This non-blocking protocol is obtained from ACP as follows:� The coordinator uses UTRB (rather than SB) to broadcast the decision in Lines 5, 6

and 8, and� if a participant times out while waiting to deliver this decision, it simply decides
ABORT (rather than invoking a termination protocol) in Line 22.

Removing the termination protocol, the only source of indefinite wait in ACP-SB,
eliminates blocking.

Theorem 2 ACP-UTRB achieves properties AC1–AC4 of the atomic commitment problem.

Proof: The proofs of AC2, AC3 and AC4 remain exactly the same as with ACP-SB.
This is because UTRB has the Validity, Integrity and �b-Timeliness properties of SB, and the
modifications made to ACP in obtaining ACP-UTRB do not affect these proofs. The proof of
AC1, however, is modified as follows.

The proof is by contradiction. Suppose participant p decides COMMIT and participantq decides ABORT. By AC4, p 6= q. Participant q can decide ABORT only in lines 14, 19, 22 and
24. The proof that q cannot decide ABORT in lines 14, 19 and 24 is exactly as before. Suppose
that q decides ABORT at line 22, that is after timing out while waiting for the delivery of the
decision message. Note that this timeout occurs at real-time tknow + �c + 2� + �b. From
the first part of the proof, a coordinator must have broadcast a COMMIT message which was
delivered by p. By AX3 and the protocol, this broadcast occurred by real-time tstart+�c+2�.
Since pdelivered COMMIT, by the Uniform Agreement property of the broadcast, q eventually
delivers COMMIT as well. By the �b-Timeliness property of the broadcast, q does so by real-
time tstart +�c + 2� +�b. Since tstart � tknow , q must have delivered COMMIT before timing
out. This, however, contradicts the semantics of the wait-for statement. 2

We now prove that ACP-UTRB is indeed non-blocking by showing that it satisfies
AC5.

Theorem 3 Every correct participant that executes ACP-UTRB eventually decides.

Proof: In ACP-SB, a correct participant could be prevented from reaching a decision
only by executing the termination protocol of line 22. This is because each wait-for statement
has an associated timeout clause that makes indefinite waiting elsewhere impossible. In
ACP-UTRB, we substituted the termination protocol with a unilateral ABORT decision, thus
eliminating the only potential source of blocking. So, every correct participant that executes
ACP-UTRB eventually decides. 2
6. Thus, UTRB is a strengthening of SB.

UBLCS-93-2 12

10 A Simple UTRB Algorithm

procedure broadcast(m, G)

% Broadcaster executes:
send [DLV: m] to all processes in G
deliver m

% Process p 6= broadcaster in G executes:
upon (first receipt of [DLV: m])

send [DLV: m] to all processes in G
deliver m

end

Figure 5. UTRB1: A Simple UTRB Algorithm

10 A Simple UTRB Algorithm

In Figure 5 we show UTRB1, a simple UTRB algorithm obtained from SB1 as follows. First,
each process relays every message it receives to all others (so, if any correct process receives a
message, then all correct processes also receive it, even if the broadcaster crashes). Second, a
process does not deliver a message it has received until it has completed relaying it (thus, all
correct processes receive and deliver the message even if the relayer subsequently crashes).

Theorem 4 Algorithm UTRB1 achieves broadcast properties B1–B4.

Proof: The proofs that UTRB1 satisfies B1 and B2 (Validity, Integrity) are trivial. We
now prove B3 and B4.

B3 (�b-Timeliness): Let F denote the maximum number of processes that may crash
during the execution of the atomic commitment protocol. Suppose the broadcast of messagem is initiated at real-time tb and some process, say p, delivers m. We show that there
exists a constant delay �b = (F + 1)� by which this delivery must occur. Let p1; p2; . . . ; pi
be the sequence of processes that relayed m from the broadcaster on its way to p, wherep1 = broadcaster and pi = p. Since a process never sends the same message more than once,
these processes are all distinct. Note that for all j, 1 � j � i, message m traverses j � 1 links
before it is delivered by a process pj . So pj delivers m by real-time tb + (j � 1)�. There are
two cases to consider:

1. (i � F +1) Process p = pi deliversm by time tb+F�, that is within�b of the broadcast.

2. (i > F +1) Consider processes p1; p2; . . . ; pF+1. Since they are all distinct, one of them,
say pj for some j � F + 1, must be correct. Note that pj delivers and relays m by timetb+(j� 1)�. Since pj is correct, p will receive m from pj at most � time units later, that
is by time tb + j�. Since j � F + 1, pj delivers m by time tb + (F + 1)�, that is within�b of the broadcast.

B4 (Uniform Agreement): To show that UTRB1 satisfies B4, note that a process does
not deliver a message unless it has previously relayed that message to all. So, if any process
delivers a message, this message will eventually be received and delivered by all correct
processes. 2
UBLCS-93-2 13

11 Recovery from Failures

procedure recovery protocol(p)
% Executed by recovering participant p

1 R := set of DT-log records regarding transaction
2 case R of
3 fg: skip
4 fstartg: decide ABORT

5 fstart,nog: decide ABORT

6 fstart,vote,decisiong: skip
7 fstart,yesg:
8 while (undecided) do
9 send [HELP, transaction] to all participants
10 set-timeout-to 2�
11 wait-for receipt of [REPLY: transaction, reply] message
12 if (reply 6=?) then
13 decide reply
14 else
15 if (received ? replies from all participants) then
16 decide ABORT

17 on-timeout
18 skip

od
esac

end

Figure 6. Recovery: The Recoverer’s Algorithm

11 Recovery from Failures

To complete our discussion of non-blocking atomic commitment, we need to consider
the possibility of a participant that was down becoming operational after being repaired.
Such a participant returns to the operational state by executing a recovery protocol. This
protocol first restores the participant’s local state using a distributed transaction log (DT-log)
that the participant maintains in stable storage. The protocol then tries to conclude all the
transactions that were in progress at the participant at the time of the crash. Our recovery
protocol and DT-log management scheme are very similar to those of 2PC with cooperative
termination [3]. We include them here for completeness.

We consider the possibility of recovery by adding the following requirement to the
specification of the atomic commit problem:

AC6: If all participants that know about the transaction remain operational long enough,
then they all decide.

To facilitate recovery, participants write records of certain key actions in the DT-log. In
particular, when a participant receives a T START message, it writes a start record containing
the transaction identifier and the list of participants in the DT-log. Before a participant sends
a YES vote to the coordinator, it writes a yes record in the DT-log. If the vote is NO, a no record
is written as the vote and an abort is written as the decision. These records can be written
before or after sending the NO vote. When a COMMIT (or ABORT) decision is received from
the coordinator, the participant writes a commit (or abort) record in the DT-log. Writing of

UBLCS-93-2 14

11 Recovery from Failures

1 upon (receipt of [HELP, transaction] message from p)
2 R := set of DT-log records regarding transaction
3 case R of
4 fg: decide ABORT; send [REPLY: transaction, ABORT] to p
5 fstartg: decide ABORT; send [REPLY: transaction, ABORT] to p
6 fstart,nog: send [REPLY: transaction, ABORT] to p
7 fstart,vote,decisiong: send [REPLY: transaction, decision] to p
8 fstart,yesg: send [REPLY: transaction, ?] to p

esac

Figure 7. Recovery: The Responder’s Algorithm

this decision record constitutes the act of “deciding.” In the protocol descriptions, we use
vote and decision to represent arbitrary vote and decision records, respectively.

The recovery protocol consists of two components — the actions performed by the
recovering participant (Figure 6) and the actions performed by other participants in response
to requests for help (Figure 7). For each transaction that was active at the time of the crash,
the recovering participant first tries to decide unilaterally based on the DT-log. If it cannot,
it send out requests for help from the other participants until it either receives a decision
from some participant, or it receives “don’t know” replies from all participants. When this
protocol is used for recovery together with our non-blocking ACP-UTRB, we can prove the
following property (which is stronger than AC6):

Theorem 5 (AC6’) If a participant that knows about the transaction recovers, it will eventually
decide provided that either (i) there was no total failure, or (ii) there was a total failure but all
participants recover and stay operational long enough.

Proof: Let p be the recovering participant. The only case where p cannot decide
unilaterally is if crashed after having voted YES but before having decided. We show that in
both scenarios of the theorem, p eventually decides.

Suppose participant p is recovering from a partial failure. In other words, there exists
a participant q that has never crashed. There are two cases to consider:

1. (Participant q knows about the transaction) Since ACP-UTRB is non-blocking (i.e., sat-
isfies AC5), q eventually decides. The recovering participant p succeed in contactingq for help and will decide accordingly.

2. (Participant q does not knows about the transaction) By the protocol, when asked byp, q will unilaterally decide ABORT and send it to p, forcing it to decide.

Now suppose p is recovering from a total failure. Note that p repeatedly sends help
messages until either it receives a reply 6=? or it receives a reply from every participant: both
cases allow p to decide. Since we assume that all participants eventually recover and remain
operational for long enough to respond to p’s request for help, one of these two conditions
must eventually occur, and p eventually decides. 2

Note that case in recovering from a total failure, waiting for all participants to recover
is conservative in the sense that it may be possible to recover earlier. In particular, it
is sufficient to wait until the set of recovered participants contains the last one to have

UBLCS-93-2 15

12 Performance of ACP-UTRB

crashed [3,26].
Since the recovery protocol may lead to a decision, we need to show that this decision

is not in conflict with any decisions resulting from the ACP-UTRB itself.

Theorem 6 The recovery protocol of Figures 6 and 7 is correct (i.e., it does not violate properties
AC1–AC4 of the atomic commitment problem).

Proof: Note that we need not consider property AC3 since there could not have been
any recovery by the assumption of no failures. We prove the remaining properties in the
order AC4, AC2 and AC1.

(AC4) From the structure of the protocol and the use of DT-log, it is clear that even
with recovery, participants decide at most once. Thus, AC4 remains valid.

(AC2) For contradiction, assume that AC2 is violated. Let p be that first participant
that decides COMMIT during recovery, violating AC2. From the recovery protocol, p must
have received a reply from some participant q with value COMMIT. By definition of p, q could
not have decided during recovery (it must have done so using ACP-UTRB). All decisions
reached using ACP-UTRB satisfy AC2. A contradiction.

(AC1) There are two case to consider:
1. (Some participant p decides d during ACP-UTRB) Let q be the first participant that

decides during recovery. For contradiction, assume q decides �d. We again consider
two cases.

(a) (q decides unilaterally) Since ABORT is the only possible unilateral decision in
the recovery protocol, it must be that �d = ABORT, and so d = COMMIT. Sincep decided COMMIT and ACP-UTRB satisfies AC2, all participants, including q,
must have voted YES. So when q recovers, its DT-log contains fstart,yesg. Since q
unilaterally decides ABORT, it must have received “?” replies from all processes,
including one from p. This is impossible since p decided COMMIT (and it’s reply
to q would also be COMMIT).

(b) (q decides based on a reply) Let r be the participant that replies with the decision�d to q. By the definition of q, r could not have decided during recovery. It must
have done so in ACP-UTRB. Thus, p and r decide different values in ACP-UTRB.
This is a contradiction since ACP-UTRB satisfies AC1.

2. (No participant decides in ACP-UTRB) We can show that all participants must decide
ABORT. For contradiction, let p be the first participant that decides COMMIT during
recovery. From the protocol, pmust have received a COMMIT reply from some q. Thus,q must have decided before p. This contradicts the definition of p. 2

12 Performance of ACP-UTRB

Just as its development and proof of correctness, the performance of the non-blocking atomic
commitment protocol ACP-UTRB can be analyzed in a modular fashion. Both the time delay
and message complexity of ACP-UTRB can be expressed as the sum of the cost of ACP and
the cost of the particular instance of UTRB used.

Let n denote the number of participants for the transaction. Recall that F is the
maximum number of participants that may crash during the protocol execution. LetTACP�UTRB and MACP�UTRB denote the time delay and message complexity, respectively,

UBLCS-93-2 16

13 Optimizations

of ACP-UTRB. From the structure of ACP-UTRB, it is clear that TACP�UTRB = 2� + �b andMACP�UTRB = 2n + �b, where �b and �b denote the timeliness and message complexity,
respectively, of the particular UTRB algorithm used. The additive terms 2� and 2n are the
time and message costs due to ACP.

We now consider the performance of ACP-UTRB when UTRB1 is used as the broadcast
algorithm. In UTRB1, each process relays each message to all other participants, so the
message complexity of UTRB1 is n2. The proof of Theorem 4 shows that the timeliness of
UTRB1 is (F + 1)�. Thus, the performance of ACP-UTRB using UTRB1 is TACP�UTRB1 =(F + 3)� and MACP�UTRB1 = 2n+ n2.

13 Optimizations

As we saw in the previous section, the performance of ACP-UTRB depends on the perfor-
mance of the particular implementation of UTRB that is used. The implementation that we
gave so far, UTRB1, is very simple but requires a quadratic number of messages. In the
next two sections, we present more efficient implementations of UTRB. We first describe
UTRB2, an algorithm that requires only a linear number of messages. We then give UTRB3,
a message-efficient algorithm that improves on the timeliness of UTRB2.

13.1 A Message-Efficient UTRB Algorithm

The message complexity of algorithm UTRB1 can be reduced from quadratic to linear using
the idea of rotating coordinators [4]. Rather than having each process relay every message to
all other processes under all circumstances, we arrange for a process to assume the role of
the initial broadcaster only in case of failures. The resulting algorithm is called UTRB2 and
is displayed in Figure 8. The algorithm relies on the FIFO property of the communication
channels.

The algorithm uses three types of messages: MSG announces the initial message, DLV

causes a delivery, and REQ is used to request help. The initial broadcaster constructs a list
of processes called cohorts that will cooperate in performing the broadcast. The first process
on this cohort list is the broadcaster itself. To tolerate the failure of up to F processes, the
cohort list containsF +1 distinct process names. This list, along with the index of the current
cohort is included in MSG and REQ messages.

13.1.1 Performance of Algorithm UTRB2

Recall that �b, the timeliness of UTRB, is the maximum time that may elapse between the
broadcast and delivery of a message. In other words, if a message is delivered, it is delivered
within �b time units after the broadcast (but it is possible for a message broadcast by a faulty
process not to be delivered by any process). Let f denote the number of processes that actually
crash just during the execution of the broadcast algorithm. Clearly f � F , since F denotes
the maximum number of processes that may crash during the entire atomic commitment
protocol execution. We now derive expressions for �b, and the message complexity of
UTRB2, as a function of f .

The broadcaster sends a MSG message immediately followed by a DLV message to all.
We assume that � time units elapse between these two send to all operations. This time

UBLCS-93-2 17

13 Optimizations

procedure broadcast(m, G)

% Broadcaster executes:
1 send [MSG: m, cohorts, 1] to all processes in G
2 send [DLV: m] to all processes in G

% Process p in G executes:
3 upon (first receipt of [MSG: m, cohorts, index])
4 i := index
5 first timeout := local clock + (� + �)
6 for k := 0; 1; . . . do
7 set-timeout-to first timeout + k(2� + �)
8 wait-for (receipt of [DLV: m])
9 deliver m
10 exit loop
11 on-timeout
12 if (i < F+ 1) then
13 i := i + 1
14 send [REQ: m, cohorts, i] to cohorts[i]
15 else exit loop % More than F cohorts have failed

od

16 upon (first receipt of [REQ: m, cohorts, index])
17 send [MSG: m, cohorts, index] to all processes in G
18 send [DLV: m] to all processes in G

end

Figure 8. UTRB2: A Message-Efficient UTRB Algorithm

UBLCS-93-2 18

13 Optimizations

accounts only for the processing delays and does not include network transport delays. 7 If
there are no failures (f = 0), each process will receive this DLV message within � + � time
units from the time MSG was broadcast. This scenario results in a total of 2n messages.

Now consider the case f = 1 and the broadcaster is faulty. The worst-case message
delay occurs if at least one process receives the broadcaster’s MSG message but not all receive
the DLV. The initial MSG message could take up to � time units to arrive. Those processes
that receive MSG but do not receive DLV will wait an additional �+ � time units from the time
they received MSG before timing out and requesting help from the next cohort. The cohort
receives this request at most � time units later. This cohort has to be correct (since f = 1)
and sends MSG followed by DLV at most � time units after it received the request. This DLV

is received at most � time units later. Thus, the maximum total elapsed time before delivery
becomes � + (� + �) + � + � + � = 4� + 2� . As for messages, note that only those processes
that did not receive DLV send REQ messages to the next cohort. Thus, the number of MSG

and DLV messages sent by the broadcaster and the REQ messages sent by processes to the
next cohort sum to 2n. The cohort behaves just like the original broadcaster and sends 2n
additional messages, resulting in 4n total messages.

Number of Faulty Processes Timeliness (�b) Messagesf = 0 � + � 2n
1 � f � F (f + 1)(2� + �) (f + 1)2n
Table 1. Performance of Algorithm UTRB2

In general, worst-case performance results when each additional failure is that of a
different cohort. The loop with a 2�+� timeout period is repeated until either a DLV message
arrives (and causes delivery), or there are no more cohorts to ask for help (i.e., more than F
processes crash). Thus, each new failure beyond the first results in 2� + � additional time
units and 2n additional messages. These results are summarized in Table 1.

13.1.2 Correctness of Algorithm UTRB2

We now prove the correctness of algorithm UTRB2.

Theorem 7 Algorithm UTRB2 of Figure 8 satisfies the UTRB properties.

Proof: We show that UTRB2 satisfies the Validity, Integrity,�b-Timeliness and Uniform
Agreement.

Validity: Assume that the broadcaster is correct. It sends [MSG: m, cohorts, 1] at real
time tb to all, and the [DLV: m] message by time tb + � to all. Since the channels are FIFO,
all correct processes will first receive [MSG: m, cohorts, 1] (in line 3) and then receive [DLV:m] (in line 8) at most � + � time units later. Thus every correct process delivers m without
timing out on the wait of line 8.

Integrity: Clear from the structure of the algorithm.

7. In systems where the communication subsystem buffers messages such that send operations do not block a
process, � should be negligible compared to �.

UBLCS-93-2 19

13 Optimizations�b-Timeliness: Recall that at most F processes may crash during the atomic com-
mitment protocol execution. In the worst case, f = F processes actually crash during
the execution of algorithm UTRB2. From Table 1, we see that if F processes crash then any
message broadcast at time t cannot be delivered after time t+�b, where�b = (F+1)(2�+�).

Uniform Agreement: It is trivially satisfied if no process ever delivers a message. So,
suppose some process delivers a message m. By Integrity, mwas broadcast by some process.
Moreover, no process can deliver a message other than m. Thus, we only need to show that
all correct processes eventually deliver some message.

For contradiction, let q be a correct process that never delivers a message. Since some
process delivered a message, at least one of the cohorts sent a DLV message. This cohort must
have sent a MSG message to all before sending this DLV. Thus, q enters and exits the loop
that starts in line 6. Let t1 and t2 be the real-times at which q enters and exits, respectively,
this loop. Note that t1 is the time that q received its first MSG message, and that, since q waits�+ � units on its first iteration of the loop, t1 +(�+ �) � t2. Since q never delivers a message,
it did not receive any DLV message during the interval of time [t1; t2].
Claim 1 For all j, 3 � j � F + 1, if a REQ message is sent to cj, then a REQ message was also sent
to cj�1 at least � time units earlier.

Proof: Let s be the first process that sent REQ message to cj. From the algorithm, it is
easy to see that one of these two cases holds:

1. Process s itself sent a REQ message to cj�1, and it did so at least � time units earlier.
2. The index field of the first MSG message that s received is j� 1, and it came from cj�1.

From the receipt of that message, s waits for � + � before sending the REQ message
to cj . Note that cj�1 must have received some REQ message before sending the MSG

message to s. Thus, the REQ to cj�1 was sent at least � + � before the REQ to cj .
So the Claim holds in both cases. 2

Claim 2 For all i; j, 1 � i < j � F + 1, if both ci and cj send MSG messages, then ci does so before
(or at the same time as) cj .

Proof: For i = 1, ci is the broadcaster and its first step is to send MSG messages to all.
This clearly occurs before the other cohorts send any message. For i � 2, by Claim 1, the
first REQ to ci was sent at least � earlier than the first REQ to cj . Even if the REQ to ci takes �
time units (the maximum possible), and the one to cj arrives immediately, ci must receive
its REQ before (or at the same time as) cj . Note that it is the receipt of the first REQ message
that triggers the sending of a MSG. 2
Claim 3 A REQ message must have been sent to c2; . . . ; cF+1.

Proof: Since q enters and exits the loop that starts in line 6, there are two possible
cases:

1. Process q sent a REQ to cF+1.
2. The index field of the first MSG message that q received is F + 1, and it came fromcF+1. Note that some REQ message must have been previously sent to cF+1.

In both cases, by repeated application of Claim 1, we conclude that a REQ message
was also sent to c2; . . . ; cF . 2
UBLCS-93-2 20

13 Optimizations

Claim 4 At least one correct cohort in fc1; c2; . . . ; cF+1g sent a MSG followed by a DLV to all
(including q).

Proof: Obvious from Claim 3 and the fact that at most F processes may be faulty. 2
Let ci be the correct cohort with the smallest index that satisfies Claim 4. We now

show that the DLV sent by ci is received by q during the interval [t1; t2], contradicting our
earlier remark. This is done by the next two Claims.

Claim 5 The DLV sent by ci arrives at q after t1.

Proof: Cohort ci sent MSG before sending DLV. By the FIFO property, q receives MSG

before receiving DLV. The result follows from the definition of t1. 2
Claim 6 The DLV sent by ci arrives at q before t2.

Proof: Consider the MSG that causes q to enter the loop (this occurs at time t1). Let j
be the value of the index field of that MSG. This message is from cohort cj . There are three
possible case:

1. (1 � j < i � F +1) In this case, we can see from the algorithm that q eventually sends
a REQ to ci. Let treq be the time it does so. Note that after treq, process q waits 2� + �
to receive a DLV. So, treq + 2� + � � t2. Note that ci receives the REQ from q by timetreq + �, and being correct it sends a DLV by time treq + � + � . This DLV arrives at q by
time treq + 2� + � , that is, before t2.

2. (1 � j = i � F + 1) In this case, the MSG that causes q to enter the loop at time t1 is
from ci itself. Since ci is correct, its DLV message (sent at most � after MSG) is received
by q by time t1 + � + � � t2.

3. (1 � i < j � F + 1) Let simsg , sjmsg be the times that ci and cj sent their MSG

message, respectively. From Claim 2, simsg � sjmsg . Note that ci sends DLV by timesimsg + � , and this message arrives at q by time rdlv = simsg + � + �. Since sjmsg � t1,rdlv � t1 + � + � � t2.

Thus, in all possible cases, the Claim holds. 2
13.2 Reducing Time Delay: Algorithm UTRB3

We can modify UTRB2 to improve timeliness while maintaining a linear number of messages.
The basic idea is to overlap sending of REQ messages to the next cohort with the (possible)
arrival of DLV messages from the previous cohort. By being pessimistic and asking for help
before the full round-trip message delay (2� + �), a process can reduce the time to deliver a
message. The resulting algorithm of Figure 9, called UTRB3, is essentially UTRB2 with the
timeout period for the request loop reduced from 2� + � to �. Note that this modification
may result in increased message traffic if the pessimism is unwarranted in the sense that the
previous cohort was correct but REQ messages were sent before waiting long enough for the
arrival of its DLV messages.

13.2.1 Performance of Algorithm UTRB3

In case of no failures, UTRB3 behaves exactly like UTRB2 and has the same timeliness and
message complexity. In the general case, we can show that worst-case delay results when

UBLCS-93-2 21

13 Optimizations

procedure broadcast(m, G)

% Broadcaster executes:
1 send [MSG: m, cohorts, 1] to all processes in G
2 send [DLV: m] to all processes in G

% Process p in G executes:
3 upon (first receipt of [MSG: m, cohorts, index])
4 i := index
5 first timeout := local clock + (� + �)
6 for k := 0; 1; . . . do
7 set-timeout-to first timeout + k�
8 wait-for (receipt of [DLV: m])
9 deliver m
10 exit loop
11 on-timeout
12 if (i < F+ 1) then
13 i := i + 1
14 send [REQ: m, cohorts, i] to cohorts[i]
15 else
16 if (k 6= 0) then
17 set-timeout-to first timeout + k� + � + �
18 wait-for (receipt of [DLV: m])
19 deliver m
20 on-timeout
21 skip % More than F cohorts have failed
22 exit loop

od

23 upon (first receipt of [REQ: m, cohorts, index])
24 send [MSG: m, cohorts, index] to all processes in G
25 send [DLV: m] to all processes in G

end

Figure 9. UTRB3: A Message- and Time-Efficient UTRB Algorithm

UBLCS-93-2 22

13 Optimizations

the message transits a chain of f faulty cohorts starting with the broadcaster before arriving
at a correct one.8 Thus, we need to quantify the maximum time that can elapse before
some process sends a REQ message to the first correct cohort. Given the structure of the
algorithm, a correct process requests help from a new cohort every � time units after it fails
to receive the DLV message from the broadcaster. At most 2� + � time units elapse until the
first request for help and from then on a new cohort is involved every � time units. Given
that f � 1 faulty cohorts are woken up (since the broadcaster itself must be also faulty), we
have 2� + � + (f � 1)� time units until the the first correct cohort is contacted for help. It
is clear that within 2� + � time units after a process sends a REQ message to the first correct
cohort, all processes deliver. Summing this final delay to the previous expression, we obtain
3� + 2� + f� as the timeliness parameter.

Consider the message complexity for f = 1. As before, the MSG and DLV messages sent
by the (faulty) broadcaster plus the REQ messages sent to the first cohort sum to 2n. From the
instant the first REQ message is sent to the time when the corresponding DLV message arrives
(2� + � time units later), up to two additional cohorts can be woken up (resulting in at mostn REQ messages each). Thus, up to three cohorts may be active. Each of these three (correct)
cohorts will respond by sending 2n messages. Summing up, we have 10n total messages.
Generalizing this analysis, we obtain 8n+ 2fn as the message complexity of UTRB3 for the
case 1 � f � F . The performance of UTRB3 is summarized in Table 2.

Number of Faulty Processes Timeliness (�b) Messagesf = 0 � + � 2n
1 � f � F 3� + 2� + f� 8n+ 2fn
Table 2. Performance of Algorithm UTRB3

13.2.2 Correctness of Algorithm UTRB3

We now prove the correctness of algorithm UTRB3.

Theorem 8 Algorithm UTRB3 of Figure 9 satisfies the UTRB properties.

Proof: The proofs of Validity and Integrity are exactly as those for algorithm UTRB2.
The proof of �b-Timeliness is obtained by substituting F for f in the delay analysis of the
previous section, resulting in �b = 3� + 2� + F�.

The proof of Uniform Agreement is the same as that for UTRB2, except for the first
case of Claim 6, which is now as follows.

1. (1 � j < i � F +1) In this case, we can see from the algorithm that q eventually sends
a REQ to ci. Let treq be the time at which it does so. Note that after treq , process q first
waits � to receive a DLV. If i = F + 1, then q waits an additional � + � units of time
(at line 18) before exiting the loop. If i < F + 1, then q eventually sends a REQ to cF+1

and waits � + (� + �) before exiting the loop. Thus, in both cases, treq + 2� + � � t2.

8. Actually there is another scenario leading to the same worst-case delay. Here, the message transits an
alternating chain of cohorts and participants, all faulty except the final cohort.

UBLCS-93-2 23

14 Related Work

Note that ci receives the REQ from q by time treq + �, and being correct it sends a DLV

by time treq + � + � . This DLV arrives at q by time treq + 2� + � , that is, before t2. 2
14 Related Work

The role of reliable broadcast (or other formulations including Byzantine Agreement [20])
in distributed database transaction processing has been the subject of numerous works [19,
22,10,5,12,14]. Most of these studies have tried to relate the atomic commitment problem of
transaction processing to various formulations of the Byzantine Agreement (BA) problem.
In others, BA has been proposed as a way to relax the synchronous system assumptions
or permit failures that are more general than the crash model. For instance, in [5], the
transaction commitment problem is formulated in an “almost asynchronous” system and
solved using a randomized BA protocol [1]. It is well known that in such a system, no
deterministic solution to the atomic commitment problem exists that can tolerate even a
single crash failure [8]. In [10] BA is used to cope with data storage nodes that may fail in
an arbitrary and malicious manner.

Perhaps the work that is most similar in spirit is [22] where BA is is used to replace
the second phase of 2PC. The motivation for the work, however, is to reduce recovery time
at the cost of increased message traffic and longer delays for deciding. Moreover, no formal
specifications are given for either the atomic commitment problem or the BA used in the
protocol.

15 Discussion

As stated earlier, distributed systems with unreliable communication do not admit non-
blocking solutions to the atomic commitment problem. Our protocols are no exception — if
communication is not reliable, they have to block in order not to violate property AC1. The
same blocking scenario of Section 8 where participants are partitioned into two groups may
result as a consequence of communication failures even if no participant crashes. In this case,
undecided correct participants cannot proceed because the other group is disconnected due
to communication failures rather than its participants being down. In terms of our modular
construction, the possibility of blocking can be explained by noting that communication
failures render the Uniform Agreement property (B4) of UTRB broadcast impossible to
achieve. Given the impossibility result, the best we can hope for is to extend our protocols
such that participants in a majority partition are able to proceed towards a decision while
others remain blocked [17].

16 Conclusions

We have described a solution to the non-blocking atomic commitment problem that is as
easy to understand and prove as the well-known Two-Phase Commit protocol, a protocol
that may lead to blocking [11,21]. Furthermore, our solution is complete: it does not require
any additional protocols that other solutions typically require (e.g., the Three-Phase Commit
Protocol requires a fault-tolerant leader election protocol [25]).

UBLCS-93-2 24

A Eliminating Decisions Based on Timeouts

This solution was derived by focusing on the properties of the broadcast primitive
used to disseminate the decision values. Indeed, it was obtained just by strengthening the
broadcast used in the second phase of the Two-Phase Commit protocol.

Our non-blocking atomic commitment protocol, ACP-UTRB, was given modularly: a
generic ACP protocol that relies on the properties of the UTRB broadcast. To demonstrate the
practicality of ACP-UTRB, we have given several implementations of UTRB, each improving
some performance measure. The performance of the resulting ACP-UTRB implementations
are comparable to 2PC, yet they are non-blocking.

Appendix

A Eliminating Decisions Based on Timeouts

Recall that the time performance of ACP-UTRB is given by the expression 2� + �b where�b is the timeliness of the particular instance of UTRB that is used. As we have seen with
UTRB2, in executions that actually deliver a message, some UTRB algorithms can exhibit
“early stopping” in the sense that �b is proportional to f , the number of processes that
actually crash. However, when �b is used to set a timeout for the delivery of a decision, it
has to be instantiated using F rather than f to obtain the worst-case delay. Thus, when an
ABORT decision occurs due to a timeout because no decision message was delivered, the delay
is proportional to F . In other words, there may be executions were a single failure occurs
(the coordinator crashes before sending any messages) yet no participant can decide before
waiting for a time proportional to F . In this appendix we present a broadcast algorithm that
can be used within a commitment protocol to expedite decisions that normally would have
waited for the timeout period to expire in ACP-UTRB.

The algorithm we are about to present is motivated from the observation that partic-
ipants gain knowledge about the imminent broadcast of a decision value during the voting
phase [16]. In particular, a participant that received a VOTE REQUEST message knows that a
broadcast (of the decision) is supposed to be performed by the coordinator within 2� time
units. We can use this knowledge to obtain a “Terminating” version UTRB, called Uniform
Timed Terminating Reliable Broadcast (UTTRB), that is able to detect that the broadcaster is
faulty without having to wait for a time proportional to F . As usual, we first specify the
properties of UTTRB and then develop an algorithm that achieves them.

Let M denote the set of messages that may be broadcast (in our case, M =fCOMMIT,
ABORTg). The set of messages that may be delivered is M[fBFg, where BF 62 M is a
special message indicating that the broadcaster is faulty.

UTTRB is specified by the same four properties B1–B4 of UTRB except with the
following two modifications:

B2’ (Integrity): Each process delivers at most one message, and if it delivers m 6= BF then
some process must have broadcast m.

B3’ (Termination): If some correct process knows that a broadcast is supposed to start by
some known local time, then every correct process eventually delivers some messagem 2 M[fBFg for that broadcast.

Note that since the broadcast is not allowed to broadcastBF , the Validity and Integrity
properties of UTTRB imply that a process deliversBF only if the broadcaster is indeed faulty.
Also note the the Termination property no longer has a delay parameter �b since UTTRB

UBLCS-93-2 25

A Eliminating Decisions Based on Timeouts

guarantees delivery of a message as long as some process knows that a broadcast is supposed
to happen.

Figure 10 illustrates an algorithm UTTRB1 that achieves the above properties.

Theorem 9 UTTRB1 satisfies the Validity, Integrity, Termination and Uniform Agreement proper-
ties of UTTRB.

Proof: To be filled in.
Use of UTTRB as the broadcast primitive in an Atomic Commitment Protocol requires

very few changes to the general structure. Such a protocol is illustrated in Figure 11. Note
that given the Termination property of UTTRB, the wait for the decision message does not
need a timeout. Also, BF is now a possible delivery value and results in an ABORT decision
in the case the coordinator crashes before sending a decision message to any participant.

Theorem 10 UTTRB-ACP satisfies properties AC1–AC5 of (non-blocking) Atomic Commitment.

Proof: The proofs of AC2 and AC4 are exactly as with ACP-UTRB.
(AC1) As before, the proof is by contradiction. Suppose p decides COMMIT while q

decides ABORT. By AC4, p 6= q. Note that q can decide ABORT only in lines 14, 19 and 22. The
proof that q cannot decide ABORT in lines 14 or 22 is exactly as in ACP-UTRB. We now show
that q cannot decide ABORT in line 22, that is by delivering a BF or ABORT message.

By AX1, there is at most one participant that may assume the role of coordinator. By
the protocol, this implies at most one broadcast of the decision is ever performed. Sincep decides COMMIT (line 20), it must have delivered a COMMIT message. By the Uniform
Agreement property of the broadcast, all correct participants, including q, eventually deliver
this COMMIT message as well. From the Integrity property of the broadcast (and the fact that
at most one broadcast regarding the decision is performed), q delivers at most one decision
message. Thus q never delivers BF or ABORT.

(AC3) Suppose all participants vote YES and no failures occur. Let tstart be the real-time
at which the transaction begins (this is the time at which some participant sends a T START

message). From AX2 and AX3, one participant assumes the role of coordinator by real-timetstart + �c. This coordinator immediately sends VOTE REQUEST messages which arrive bytstart + �c + �. Note that in line 11 each participant waits for this VOTE REQUEST, with a
timeout set to trigger �c + � time units after the real-time, tknow , it first learned about the
transaction (in line 2 of Figure 1)9. In other words, this timeout is set to trigger at real-timetknow + �c + �. Since tstart � tknow , each participant receives the VOTE REQUEST message it
was waiting for, before the timeout is ever triggered. Thus, all participants send their YES

votes to the coordinator. These votes arrive at the coordinator within 2� time units of his
sending the VOTE REQUEST. Therefore, the timeout associated with the coordinator’s wait
for votes in line 3 never triggers. So, the coordinator receives YES votes from all participants
and broadcasts a COMMIT message to all participants by real-time tstart +�c + 2�.

Note that in line 17, all correct participants are waiting for the delivery of this decision
message. This wait has no timeout. From Figure 1 and the fact that the invoker does not
crash, each correct participant receives T START, and thus knows that a broadcast (about the
decision) is supposed to start by local time Cknow + �c. By the Termination and Validity

9. Note that the variable Cknow records the local time at which this event occurs.

UBLCS-93-2 26

A Eliminating Decisions Based on Timeouts

procedure broadcast(m, G)

% Broadcaster executes:
1 send [MSG: m, cohorts, 1] to all processes in G
2 send [DLV: m] to all processes in G

% Process p in G that knows a broadcast is supposed to start by local time Cp executes:
3 if (by local time Cp + � no message [MSG: -, -, -] was received) then
4 simulate receipt of [MSG: BF, cohorts, 1]

% Process p in G executes:
5 upon (first receipt of (a possibly simulated) [MSG: estimate, cohorts, index])
6 e, i := estimate, index
7 first timeout := local clock + (� + �)
8 for k := 0; 1; . . . do
9 set-timeout-to first timeout + k(2� + �)
10 wait-for (receipt of [DLV: estimate])
11 deliver estimate
12 exit loop
13 on-timeout
14 if (i < F+ 1) then
15 i := i + 1
16 send [REQ: e, cohorts, i] to cohorts[i]
17 set-timeout-to local clock + 2�
18 wait-for (receipt of [MSG: estimate, cohorts, index])
19 e := estimate
20 on-timeout
21 skip
22 else skip % More than F cohorts have failed

od

23 upon (first receipt of [REQ: estimate, cohorts, index])
24 send [MSG: estimate, cohorts, index] to all processes in G
25 send [DLV: estimate] to all processes in G

end

Figure 10. UTTRB1: A Uniform Timed Terminating Reliable Broadcast Algorithm

UBLCS-93-2 27

A Eliminating Decisions Based on Timeouts

procedure atomic commitment(transaction, participants)
cobegin
% Task 1: Executed by the coordinator

1 send [VOTE REQUEST] to all participants % Including the coordinator
2 set-timeout-to local clock + 2�
3 wait-for (receipt of [VOTE: vote] messages from all participants)
4 if (all votes are YES) then
5 broadcast (COMMIT, participants) % Using a UTTRB
6 else broadcast (ABORT, participants) % Using a UTTRB
7 on-timeout
8 broadcast (ABORT, participants) % Using a UTTRB

//

9 % Task 2: Executed by all participants (including the coordinator)
10 set-timeout-to Cknow +�c + �
11 wait-for (receipt of [VOTE REQUEST] from coordinator)
12 send [VOTE: vote] to coordinator
13 if (vote = NO) then
14 decide ABORT

15 else
16 % In contrast to ACP-UTRB, the wait for a decision has no timeout!
17 wait-for (delivery of decision message)
18 if (decision message is BF or ABORT) then
19 decide ABORT

20 else decide COMMIT

21 on-timeout
22 decide ABORT

coend
end

Figure 11. ACP-UTTRB: Non-Blocking Atomic Commitment Protocol Based on UTTRB

UBLCS-93-2 28

B Coping with Imperfect Local Clocks

properties of the broadcast, every participant eventually delivers the COMMIT message. Thus
all participants eventually decide COMMIT.

(AC5) If a correct participant executes UTTRB-ACP, it must have received T START from
the invoker and thus knows that a broadcast (about the decision) is supposed to start by
local time Cknow + �c. By the Termination property of the broadcast, it eventually delivers
some message m 2fCOMMIT, ABORT, BFg. Thus, every correct participant that executes
UTTRB-ACP eventually decides. 2
B Coping with Imperfect Local Clocks

Up to now, we have assumed that local clocks of processes are perfect in that they run exactly
at the same rate as real-time. In practice, local clocks only guarantee a bounded drift rate
with respect to real-time. In other words, there exists a parameter � > 0 such that for allt2 � t1, (1 + �)�1(t2 � t1) � Ci(t2)� Ci(t1) � (1 + �)(t2 � t1)

where Ci(t) is the reading of the local clock of process pi at real-time t. Thus, local
clocks are within a linear envelope of real-time. We assume that parameter � is common to
all of the clocks.

In our protocols, clocks are used only to measure the passage of local time intervals in
implementing the timeouts associated with various wait events at a process. In particular,
they are never used in a manner where the clock value of process pi is interpreted in the
context of another process pj . Thus, local clocks need not be synchronized with each other.

Since all of the parameters used by our protocols (e.g., �, � , �c and �b) are given in
terms of real-time, we need to convert timeout periods specified in terms of real-time to local
clock time. We also need to be able to convert a time interval measured by one process into an
interval measured at another process. Note that these modifications are not exclusive to our
protocols — any protocol that bases its actions on the passage of real-time must be modified
in a similar manner in order to function correctly with realistic clocks. Our modifications
are based on the following two observations:� To guarantee that at least T seconds of real-time elapse, T (1+ �) ticks must elapse on

a local clock,� To guarantee that at least X ticks elapse on the local clock of process pi, X(1 + �)2

ticks must elapse on the local clock of process pj .
All of the algorithms and protocols we have developed remain correct if the timeout

values are modified as follows based on the above observations:
Figure 2: Line 2 replace 2� with 2�(1+ �). Line 10 replace �c + � with (�c + �)(1+ �).

Line 16 replace (�c + 2� + �b) with (�c + 2�(1 + rho)2 + �b)(1 + �).
Figure 4: Same changes as in Figure 2.
Figure 6: Line 10 replace 2� with 2�(1 + �).
Figure 8: Line 5 Replace (� + �) with (� + �)(1 + �). Line 7 Replace k(2� + �) withk(2� + �)(1 + �).
Table 1: Case f = 0: No changes. Case 1 � f � F : For f = 1 the correct expression is�+(3�+ 2�)(1+�). For f > 1 the correct expression is �+(�+ �)(1+�)+ f(2�+ �)(1+�) =� + f(3� + 2�)(1 + �).
Figure 9: Lines 5, 7, 18 multiply all time constants by 1 + �.
Table 2: Case f = 0: No changes. Case 1 � f � F : � + (2� + 2� + f�)(1 + �).

UBLCS-93-2 29

REFERENCES

Acknowledgments We are grateful to Tushar Chandra for his comments on an early draft of
this work.

References

[1] M. Ben-Or. Another Advantage of Free Choice: Completely Asynchronous Agreement
Protocols. In Proc. of the 2nd ACM Symp. on Principles of Distributed Systems, Montreal,
Canada, August 1983, 27–30.

[2] P.A. Bernstein and N. Goodman. Concurrency Control in Distributed Database Systems.
ACM Computing Surveys, vol. 13, no. 2, June 1981, 185–222.

[3] P.A. Bernstein, V. Hadzilacos and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, Massachusetts, 1987.

[4] T. Chandra and S. Toueg. Time and Message Efficient Reliable Broadcast. In Proc. of the
4th International Workshop on Distributed Algorithms, September 1990, Bari, Italy, J. van
Leeuwen and N. Santoro (Eds.), Lecture Notes in Computer Science, vol. 486, Springer-
Verlag, 289–300. Full version available as Cornell Technical Report, TR 90-1094, May
1990.

[5] B.A. Coan and J. Lundelius. Transaction Commit in a Realistic Fault Model. In Proc. of
the 5th ACM Symp. on Principles of Distributed Systems, Calgary, Alberta, Canada, August
1986, 40–51.

[6] D. Dolev and H.R. Strong. Distributed Commit with Bounded Waiting. In Proc. of the
2nd Symp. on Reliability in Distributed Software and Database Systems, 1982, 53–60.

[7] C. Dwork and D. Skeen. The Inherent Cost of Non-Blocking Commitment. In Proc. of
the 2nd ACM Symp. on Principles of Distributed Systems, Montreal, Canada, August 1983,
1–11.

[8] M. Fischer, N. Lynch and M. Paterson. Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM, vol. 32, no. 2, April 1985, 374–382.

[9] H. Garcia-Molina. Elections in a Distributed Computing System. IEEE Trans. on Com-
puters, vol. C-31, no. 1, January 1982, 48–59.

[10] H. Garcia-Molina, F. Pittelli and S. Davidson, Applications of Byzantine Agreement
in Database Systems. Technical Report TR 316, Princeton University, Princeton, New
Jersey, June 1984.

[11] J.N. Gray. Notes on Database Operating Systems. In Operating Systems: An Advanced
Course, R. Bayer, R.M. Graham and G. Seegmuller (Eds.), Lecture Notes in Computer
Science, vol. 60, Springer-Verlag, 1978.

[12] J.N. Gray. A Comparison of the Byzantine Agreement Problem and the Transaction
Commit Problem. In Fault-Tolerant Distributed Computing, B. Simons and A. Z. Spector
(Eds.), Lecture Notes in Computer Science, vol. 448, Springer-Verlag, New York, 1990,
10–17.

[13] V. Hadzilacos. Issues of Fault Tolerance in Concurrent Computations. Ph.D. dissertation,
Harvard University, 1984.

[14] V. Hadzilacos. On the Relationship Between the Atomic Commitment and Consensus
Problems. In Fault-Tolerant Distributed Computing, B. Simons and A. Z. Spector (Eds.),
Lecture Notes in Computer Science, vol. 448, Springer-Verlag, New York, 1990, 201–208.

[15] V. Hadzilacos and S. Toueg. Reliable Broadcast and Agreement Algorithms. In Dis-
tributed Systems (Second Edition), S. J. Mullender (Ed.), ACM Press, New York, 1993.

UBLCS-93-2 30

REFERENCES

[16] J.Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Distributed
Environment. Journal of the ACM, vol. 37, no. 3, July 1990, 549–587.

[17] L. Lamport. The Part-Time Parliament. Technical Report 49, DEC Systems Research
Center, Palo Alto, California, September 1989.

[18] L. Lamport and P.M. Melliar-Smith. Synchronizing Clocks in the Presence of Faults.
Journal of the ACM, vol. 32, no. 1, January 1985, 52–78.

[19] L. Lamport and M.J. Fischer. Byzantine Generals and Transaction Commit Protocols.
Computer Science Laboratory, SRI International, Op. 62, 1982.

[20] L. Lamport, R. Shostak and M. Pease. The Byzantine Generals Problem. ACM Trans.
Programming Languages and Systems, vol. 4, no. 3, July 1982, 382–401.

[21] B. Lampson. Atomic Transactions. In Distributed Systems Architecture and Implementation:
An Advanced Course, B. Lampson, M. Paul and H. Siegert (Eds.), Lecture Notes in
Computer Science, vol. 105, Springer-Verlag, 1981, 246–265.

[22] C. Mohan, R. Strong and S. Finkelstein. Method for Distributed Transaction Commit
and Recovery Using Byzantine Agreement within Clusters of Processors. In Proc. of the
2nd ACM Symp. on Principles of Distributed Systems, Montreal, Canada, August, 1983,
89–103.

[23] G. Neiger and S. Toueg. Automatically Increasing the Fault-Tolerance of Distributed
Algorithms. Journal of Algorithms, vol. 11, no. 3, September 1990, 374–419.

[24] C.H. Papadimitriou. The Serializability of Concurrent Database Updates. Journal of the
ACM, vol. 26, no. 4, October 1979, 631–653.

[25] D. Skeen. Crash Recovery in a Distributed Database System. Ph.D. dissertation, University
of California at Berkeley, 1982.

[26] D. Skeen. Determining the Last Process to Fail. ACM Trans. on Computer Systems, vol. 3,
no. 1, February 1985, 15–30.

UBLCS-93-2 31

