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Abstract. In recent years, the gossip-based communication model in
large-scale distributed systems has become a general paradigm with im-
portant applications which include information dissemination, aggrega-
tion, overlay topology management and synchronization. At the heart of
all of these protocols lies a fundamental distributed abstraction: the peer
sampling service. In short, the aim of this service is to provide every node
with peers to exchange information with. Analytical studies reveal a high
reliability and efliciency of gossip-based protocols, under the (often im-
plicit) assumption that the peers to send gossip messages to are selected
uniformly at random from the set of all nodes. In practice—instead of
requiring all nodes to know all the peer nodes so that a random sample
could be drawn—a scalable and efficient way to implement the peer sam-
pling service is by constructing and maintaining dynamic unstructured
overlays through gossiping membership information itself.

This paper presents a generic framework to implement reliable and ef-
ficient peer sampling services. The framework generalizes existing ap-
proaches and makes it easy to introduce new ones. We use this frame-
work to explore and compare several implementations of our abstraction.
Through extensive experimental analysis, we show that all of them lead
to different peer sampling services none of which is uniformly random.
This clearly renders traditional theoretical approaches invalid, when the
underlying peer sampling service is based on a gossip-based scheme.
Our observations also help explain important differences between design
choices of peer sampling algorithms, and how these impact the reliability
of the corresponding service.

* This work was partially supported by the Future & Emerging Technologies unit of
the European Commission through Project BISON (IST-2001-38923) and by the
Swiss National Fond project 2100-064994.01/1.



1 Introduction

Motivation Gossip-based communication protocols have been applied success-
fully in large scale systems. Apart from the well-known traditional application for
information dissemination [6, 9], gossiping has been applied for aggregation [16,
14,13], load balancing [15], network management [29], and synchronization [20].
The common property of these protocols is that, periodically, every node of the
distributed system exchanges information with some of its peers. The underlying
service that provides each node with a list of peers is a fundamental distributed
component of gossip-based protocols. This service, which we call here the peer
sampling service is usually assumed to be implemented in such a way that any
given node can exchange information with peers that are selected following a
uniform random sample of all nodes in the system. This assumption has led to
rigorously establish many desirable features of gossip-based broadcast protocols
like scalability, reliability, and efficiency (see, e.g., [24] in the case of information
dissemination, or [16, 14] for aggregation).

To achieve this uniform random selection, many implementors opt for the
solution where every node knows all other nodes of the system [4,11,17]. Prac-
tically speaking, every node maintains a membership table, also called its wview,
the size of which grows with the size of the system. The cost of maintaining
such tables has a non-negligible overhead in a dynamic system where processes
join and leave at run time. In short, whereas the application and its underlying
gossip-based protocol are supposed to be scalable, it is wrong to assume that
this is also the case for the underlying peer sampling service.

Recently, much research has been devoted to designing scalable implemen-
tations of this service. The basic idea is to use a gossip-based dissemination of
membership information naturally integrated into the service [8]. The continu-
ous gossiping of this information enables the building of unstructured overlay
networks that capture the dynamic nature of distributed peer-to-peer systems
and help provide very good connectivity in the presence of failures or peer dis-
connections.

Interestingly, there are many variants of the basic gossip-based membership
dissemination idea, and these variants mainly differ in the way new views are
built after merging and truncating views of communicating peers (see, e.g., [12]).
So far, however, there has never been any evaluation of and comparison between
these variants, and this makes it hard for a programmer to choose the implemen-
tation of the peer sampling service that best suits the application needs. More
importantly, it is not clear whether any of these variants actually lead to uniform
sampling, which, as we pointed out, lies at the heart of all analytical studies of
gossip-based protocols. In search for an answer to these questions, this paper
introduces a generic protocol scheme in which known and novel gossip-based
implementations of the peer sampling service can be instantiated, and presents
an extensive empirical comparison of these protocols.

Contribution First, we identify a new abstract service, the peer sampling service,
which is a fundamental building block underlying gossip-based protocols. This



peer sampling service is thus indispensable for gossip-based implementations of
a wide range of higher level functions, which include information dissemination,
aggregation, network management and synchronization.

Second, as a result of identifying this service and performing its logical sep-
aration in a class of existing applications, we present a generic protocol scheme,
which generalizes the gossip-based peer sampling service protocols we are aware
of. Our scheme makes it possible to implement new protocols as well.

Third, we describe an experimental methodology to evaluate the protocols in
question. A key aspect of the methodology is that we focus on the overlay net-
work that is induced by the peers that the service returns to nodes. In particular,
we examine if these overlays exhibit stable properties, that is, whether the corre-
sponding protocol instances lead to the convergence of important properties of
the overlay. We also measure the extent to which these communication topolo-
gies deviate from the desirable uniform random model mentioned earlier. We
do so by looking at several static and dynamic properties: degree distribution,
average path length and clustering coefficient. We also consider the reliability of
the service by examining its self-healing capacity and robustness to failure.

The behavior of the protocol instances we evaluate shows a rather wide vari-
ation. A common characteristic, however, is that no instance leads to a uniform
sampling, rendering traditional theoretical approaches invalid when these pro-
tocols are applied as a sampling service. This result is surprising, as uniform
randomness has long been generally assumed based only on (wrong) intuition.
As a result of our work, all previous theoretical results about these protocols
assuming randomness will have to be revised to properly describe the observed
behavior.

Roadmap In Section 2 we define the peer sampling service. Section 3 describes
our generic protocol and the various dimensions according to which it can be
instantiated. Section 4 presents our experimentation methodology. Sections 5, 6
and 7 discuss our results in different simulation scenarios. In Section 8 we in-
terpret the result of the experiments. Related work is discussed in Section 9.
Finally, Section 10 concludes the paper.

2 Peer Sampling Service

The peer sampling service is interpreted over a set of nodes that form the domain
of the gossip-based protocols that make use of the service. The same sampling
service can be utilized by multiple gossip protocols simultaneously, provided they
have a common target group. The task of the service is to provide a participating
node of a gossiping application with a subset of peers from the group to send
gossip messages to.

The API of the peer sampling service is extremely simple consisting of only
two methods: init and getPeer. While it would be technically straightforward to
provide a framework for a multiple-application interface and architecture, for
a better focus and simplicity of notations we assume that there is only one
application. The specification of these methods is as follows.



init() Initializes the service on a given node if this has not been done before. The
actual initialization procedure is implementation dependent.

getPeer() Returns a peer address if the group contains more than one node.
The returned address is a sample drawn from the group. The specification
of this sample (randomness, correlation in time and with other peers) is
implementation dependent (one research goal of the present paper is exactly
to give information about the behavior of this method in the case of a class
of gossip-based implementations).

Many times an application needs more than one peer. To maintain focus we
define getPeer to return only one peer. Applications requiring more peers can call
this method repeatedly. We note however that allowing getPeer to return more
peers at the same time might allow for optimizations of the implementation of
the service.

Note that we do not define a stop method. The reason is to ease the burden on
applications by propagating the responsibility of automatically removing non-
active nodes to the service layer.

The design of the service should take into account requirements with respect
to the quality of peer sampling, as well as the costs involved for providing a
certain quality.

Based on the growing body of theoretical work cited above, the service should
ideally always return a peer as the result of independent uniform random sam-
pling. However, we note that although this quality criterion is useful to allow
rigorous analysis, it is by no means the case that all gossiping applications ac-
tually require uniform randomness. For example, some applications require only
good mixing of random walks, which can also be established without demanding
that peers are sampled uniformly. On the other hand, applications such as those
that do aggregation do at least require that samples are not drawn from a fixed,
static subset of all possible nodes.

These two examples illustrate that the costs of sampling may be reduced
if near-uniformity is good enough for the application that makes use of the
sampling service. In short, for an implementation of the service there is a trade-off
between the required quality of sampling and the performance cost for attaining
that quality. Uniform randomness can be conveniently treated as a baseline to
compare protocols to, and in particular the quality of the sampling service.

3 Evaluation Framework

To study the impact on various parameters of gossip-based approaches to peer
sampling, we define an evaluation framework. A wide range of protocols fits into
this framework and in particular the peer sampling components of the protocols
Lpbcast [8] and Newscast [12] are specific instances of protocols within this
framework.

System model We consider a set of nodes connected in a network. A node has an
address that is needed for sending a message to that node. Each node maintains



do forever do forever

wait(T time units) (p, viewp) «— waitMessage()

p < selectPeer() view, « increaseHopCount(view,)

if push then if pull then
// 0 s the initial hop count // 0 is the initial hop count
myDescriptor < (myAddress, 0) myDescriptor « (myAddress, 0)
buffer « merge(view,{myDescriptor}) buffer «+ merge(view,{myDescriptor})
send buffer to p send buffer to p

else buffer < merge(view,,view)
/] empty view to trigger response view « selectView(buffer)
send {} to p

if pull then
receive view, from p
view, « increaseHopCount(view,)
buffer < merge(view,,view)
view «— selectView(buffer)

(a) active thread (b) passive thread

Fig. 1. The skeleton of a gossip-based implementation of a peer sampling service.

addresses by means of a partial view, which is a set of ¢ node descriptors. The
value of ¢ is the same for all nodes. Besides an address, a node descriptor also
contains a hop count, as we explain below.

We assume that each node executes the same protocol, of which the skeleton
is shown in Figure 1. The protocol consists of two threads: an active thread
initiating communication with other nodes, and a passive thread waiting for
incoming messages. The skeleton code is parameterized with two Booleans (push
and pull), and two function placeholders (selectPeer() and selectView()).

A view is organized as a list with at most one descriptor per node and ordered
according to increasing hop count. We can thus meaningfully refer to the first
or last k elements of a particular view (note however that all hop counts do not
necessarily differ so the first and last k elements are not always uniquely defined
by the ordering). A call to increaseHopCount(view) increments the hop count of
every element in view. A call to merge(viewq,views) returns the union of view,
and views, ordered again by hop count. When there is a descriptor for the same
node in each view, only the one with the lowest hop count is inserted into the
merged view; the other is discarded.

This design space enables us to evaluate in a simple and rigorous way the
impact of the various parameters involved in gossip-based protocols along three
dimensions: (i) Peer selection; (i) View propagation; (iii) View selection. Many
variations exist along each of these dimensions; we limit our study to the three
most relevant strategies per dimension. We shall now define these dimensions.



Peer selection Periodically, each node selects a peer to exchange membership
information with. This selection is implemented by the function selectPeer() that
returns the address of a live node as found in the caller’s current view. In this
study, we consider the following peer selection policies:

rand Uniform randomly select an available node from the view

head Select the first node from the view (the one with the lowest hop
count)

tail Select the last node from the view (the one with the highest hop
count)

View propagation Once a peer has been chosen, the peers may exchange in-
formation in various ways. We consider the following three wiew propagation
policies:

push The node sends its view to the selected peer
pull The node requests the view from the selected peer
pushpull|The node and selected peer exchange their respective views

View selection Once membership information has been exchanged between peers
and merged as explained above, peers may need to truncate their views in order
to adhere to the c¢ items limit imposed as a protocol parameter. The function
selectView(view) selects a subset of at most ¢ elements from view. Again, we
consider only three out of the many possible view selection policies:

rand Uniform randomly select ¢ elements without replacement from
view

head Select the first ¢ elements from view

tail Select the last ¢ elements from view

These three types of policies give rise to a total of 27 combinations, each of
which we express by means of a 3-tuple (ps, vs, vp) with ps indicating one of the
three possible peer selection policies, vs the view selection policies, and vp the
chosen view propagation policy. As an example, Lpbcast corresponds to the 3-
tuple (rand,rand,push), whereas Newscast is described by (rand,head,pushpull).

In the following, a DON’T CARE value (i.e., a wild card) is denoted by the symbol
Wk

Implementation of the peer sampling API The implementation of method init()
is done by initializing the view of the node by an arbitrary peer node. This
obviously involves a bootstrapping problem, which can be solved by out-of-band
methods, for example through well-known nodes or a central service publishing
contact nodes, or with any other convenient method. We will experimentally
evaluate different bootstrapping methods in Section 5. As the simplest possible
implementation, method getPeer() can return a random sample of the current
view. Obviously, more sophisticated implementations are also possible that e.g.
maximize the diversity of the set of peers returned by consecutive calls to getPeer.
From our point of view in this paper the only important feature is that getPeer
utilizes the local partial view to return a peer.



4 Experimental methodology

As already mentioned in Section 2 the baseline of our evaluation will be the
ideal independent uniform random implementation of the sampling service. It
is far from trivial to compare a given sampling service to this ideal case in a
meaningful way. Statistical tests for randomness and independence tend to hide
the most important structural properties of the system as a whole. Instead of
a statistical approach, in our methodology, we switch to a graph theoretical
framework, which provides richer possibilities of interpretation from the point of
view of reliability, robustness and application requirements, as Section 4.2 also
illustrates.

To translate the problem into a graph theoretical language, we consider the
communication topology or overlay topology defined by the set of nodes and their
views (recall that getPeer() returns samples from the view). In this framework
the directed edges of the communication graph are defined as follows. If node
a stores the descriptor of node b in its view then there is a directed edge (a,b)
from a to b.

In the language of graphs, the question is how similar this overlay topology
is to a random graph in which the descriptors in each view represent a uniform
independent random sample of the whole node set?

4.1 Targeted questions

There are two general questions we seek to answer. The first and most fundamen-
tal question is whether, for a particular protocol implementation, the communi-
cation graph has some stable properties, which it maintains during the execution
of the protocol. In other words, we are interested in the convergence behavior of
the protocols. We can expect several sorts of dynamics which include chaotic be-
havior, oscillations or convergence. In case of convergence the resulting state may
or may not depend on the initial configuration of the system. In the case of over-
lay networks we prefer to have convergence toward a state that is independent
of the initial configuration. Sometimes this property is called self-organization.
In our case it is essential that in a wide range of scenarios the system should
automatically produce consistent and predictable behavior.

Related is the question is that if there is convergence then what kind of
communication graph does the protocol converge to? In particular, as mentioned
earlier, we are interested in what sense do these graphs deviate from certain
random graph models.

4.2 Selected graph properties

In order to find answers to the above problems we need to select a set of observ-
able properties that characterize the communication graph. In the following, we
will focus on the undirected version of the communication graph which we get
by simply dropping the orientation of the edges. The reason for this choice is
that even if the “knows-about” relation that defines the directed communication



graph is one-way, the actual information flow from the point of view of the appli-
cations of the overlay is potentially two-way, since after initiating a connection
the passive party will learn about the active party as well. Now let us turn to
the properties we will examine.

Degree distribution The degree of a node is defined as the number of its neigh-
bors in the undirected communication graph. We will consider several aspects
of the degree distribution including average degree, the dynamics of the de-
gree of a node, and the exact degree distribution. The motivation for looking at
degree distribution is threefold and includes its direct relationship with reliabil-
ity to different patterns of node failures [2], its crucial effect on the exact way
epidemics are spread (and therefore on the way epidemic-based broadcasting is
performed) [23] and finally its key role in determining if there are communication
hot spots in the overlay.

Average path length The shortest path length between node a and b is the
minimal number of edges that are necessary to traverse in the graph in order to
reach b from a. The average path length is the average of shortest path lengths
over all pairs of nodes in the graph. The motivation of looking at this property is
that, in any information dissemination scenario, the shortest path length defines
a lower bound on the time and costs of reaching a peer. For scalability, small
average path length is essential.

Clustering coefficient The clustering coeflicient of a node a is defined as the num-
ber of edges between the neighbors of a divided by the number of all possible
edges between those neighbors. Intuitively, this coefficient indicates the extent
to which the neighbors of a are also neighbors of each other. The clustering co-
efficient of the graph is the average of the clustering coefficients of the nodes,
and always lies between 0 and 1. For a complete graph, it is 1, for a tree it is 0.
The motivation for analyzing this property is that a high clustering coefficient
has potentially damaging effect on both information dissemination (by increas-
ing the number of redundant messages) and also on the self-healing capacity by
weakening the connection of a cluster to the rest of the graph thereby increasing
the probability of partitioning. Furthermore, it provides an interesting possibil-
ity to draw parallels with research on complex networks where clustering is an
important research topic (e.g., in social networks) [30].

4.3 Parameter settings

The main goal of this paper is to explore the different design choices in the
protocol space described in Section 3. That is, the parameters which we want to
explore are peer selection, view selection, and symmetry model. Accordingly, we
chose to fix the network size to N = 10* and the maximal view size to ¢ = 30.
During our preliminary experiments some parameter settings turned out not
to result in meaningful overlay management protocols. In particular, (head,x,x)
results in severe clustering, (,tail,*) cannot handle dynamism (joining nodes)



protocol partitioned|average number|average largest
runs of clusters cluster
(rand,head,push) 100% 58.36 4112.09
(rand,rand,push) 33% 2.27 9572.18
(tail,head,push) 100% 38.19 7150.52
(tail,rand,push) 1% 2.00 9941.00

Table 1. Protocols where partitioning was observed in the growing overlay scenario.
Data corresponds to cycle 300.

at all and (*,*,pull) converges to a star topology, which is highly undesirable.
These variants are therefore excluded from further discussion.

5 Convergence

We now present experimental results that illustrate the convergence properties
of the protocols in three different bootstrapping scenarios. The first is the case
of a growing overlay discussed in Section 5.1. The second is the initialization of
the overlay with a structured large diameter topology (Section 5.2) and finally
the initialization with a random topology (Section 5.3).

As we focus on the dynamical properties of the protocols, we did not wish
to average out interesting patterns so in all cases the result of a single run is
shown in the plots. Nevertheless, we ran all the scenarios 100 times to gain data
on the stability of the protocols with respect to the connectivity of the overlay.
Connectivity is a crucial feature, a minimal requirement for all applications. The
results of these runs show that in all scenarios, every protocol under examination
creates a connected overlay network in 100% of the runs. The only exceptions
(shown in Table 1) were detected during the growing overlay scenario.

5.1 Growing overlay

In this scenario the overlay network initially contains only one node. At the
beginning of each cycle, 100 new nodes are added to the network until the
maximal size is reached in cycle 100. The view of these nodes is initialized with
only a single node descriptor, which belongs to the oldest, initial node.

This scenario is the most pessimistic one for bootstrapping the overlays. It
would be straightforward to improve it by using more contact nodes, which
can come from a fixed list or which can be obtained using inexpensive local
random walks on the existing overlay. However, in our discussion we intentionally
avoid such optimizations to allow a better focus on the core protocols and their
differences.

Figure 2 shows the dynamics of the properties of the communication topol-
ogy. Protocols (rand,head,push) and (tail,head,push) are not plotted due to their
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Fig. 2. Dynamics of graph properties in the growing scenario. Horizontal line indicates
the property in a uniform random topology, vertical line indicates end of growth

instability in this scenario with respect to connectivity of the overlay (see Ta-
ble 1). A non partitioned run of both (rand,rand,push) and (tail,rand,push) is
included however.

The partitioning of the push version of the protocols is due to the fact that it
is only the first, central node that can distribute new links to all new members.
For the same reason convergence is extremely slow when push is applied, while
the pushpull versions do show fast convergence. Protocols (x,rand,pushpull) are
seemingly closer to the random topology, however, we will see that this is mislead-
ing and is a result of a highly non-balanced degree distribution (see Section 6).

5.2 Ring lattice initial topology

In this scenario, the initial topology of the overlay was a ring lattice, a structured
topology. The motivation behind this experiment is to examine if the overlay
properties converge to the same random structure with a low average path length
even if the initial topology is highly structured and has a large average path
length.

We build the ring lattice as follows. The nodes are first connected into a ring
in which each node has a descriptor in its view that belongs to its two neighbors
in the ring. Subsequently, for each node, we add additional descriptors of the
nearest nodes in the ring until the view is filled.

Figure 3 shows the output of this scenario as well. As in the case of the
growing scenario, 300 cycles were run but here only 100 are shown to focus on
the more interesting initial dynamics of the protocols. We can observe that all
versions result in quick convergence which is particularly well illustrated by path
length in Figure 3(a) (note the logarithmic scale), but also by the other observed
properties.
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5.3 Random initial topology

In this scenario the initial topology was defined by a random graph, in which
the views of the nodes were initialized by a uniform random sample of the peer
nodes. Figure 3 includes the output of this scenario as well. As in the other
scenarios, 300 cycles were run but only 100 are shown.

The most interesting feature we can notice is that independently of starting
conditions, all properties converge to the same value. This cannot be seen in the
case of path length, but it is also true. We can also see that the values are rather
close to that of the random topology, maybe with the exception of the clustering
coefficient. However, to put these results in the appropriate context, we need to
consider the degree distribution as well. For instance, the star topology—which
has a maximally unbalanced degree distribution—also has a low diameter and
low clustering coefficient, while it is obviously far from random.

6 Degree distribution

When describing degree distribution in a dynamic system one has to focus on
two aspects: the dynamics of the degree of individual nodes and the dynamics
of the degree distribution over the whole overlay. In principle, knowing one of
these aspects will not determine the other, and both are important properties
of an overlay.

The results presented in this section were obtained from the experiments
performed according to the random initialization scenario described above. The
evolution of the degree distribution over the whole overlay is shown in Figure 4.
We can observe how the distribution reaches its final shape starting from the ran-
dom topology, as the distributions that correspond to exponentially increasing
time intervals (cycle 0, 3, 30 and 300) are also shown.

This time the behavior of the protocols can clearly be divided into two groups
according to view selection. Note that previous experiments did not reveal this
difference. Random view selection results in an unbalanced distribution and slow
convergence while head selection is more balanced and very fast. This is a very
important difference and it will be reflected in most of the following experiments
as well.

Let us continue with the question whether the distribution of the degree of a
fixed node over time is the same as the distribution of the converged overlay at
a fixed cycle. In the overlay the degree of 50 nodes were traced during K = 300
cycles. Table 2 shows statistical data concerning degree distribution over time
at the 50 fixed nodes and over the full overlay in the last cycle (i.e. in cycle
K). The notations used are as follows. Let d(i, ) denote the degree of node 7 in
cycle j. Let d; be the mean degree of node i over K consecutive cycles. Now,
let d = Zfﬂl d;/50 and o = z:fgl(d_Z — d)?/49, where d is the average and o is
the empirical variance of the time-averages of the degree of the traced 50 nodes.
Finally, D is the average of node degrees in cycle K over all nodes.

We can see that in all cases the degree of all nodes oscillates around the
overall average, in other words, all nodes tend to have the same degree, there



(a) (rand, rand, (b) (rand, rand, (¢) (rand, head, (d) (rand, head,
push) pushpull) push) pushpull)

(e) (tail, rand, (f) (tail, rand, (g) (tail, head, (h) (tail, head,
push) pushpull) push) pushpull)

Fig. 4. Degree distributions on the log-log scale, when starting from a random topology.
The ranges are [30,300] for the degree axis (horizontal), and [1:1000] for the frequency
axis (vertical). Note that degree is guaranteed to be at least 30. The symbol 4+ denotes
the random graph (cycle 0). Empty box, empty triangle and filled circle belong to cycle
3, 30 and 300, respectively.

are no emerging higher degree nodes on the long run. On the other hand, we
again observe a major distinction according to view selection. In the case of
random selection the oscillation has a much higher amplitude, the network is
less stable.

The last question we consider is whether the sequence of node degrees during
the cycles of the protocol can be considered a random sequence drawn from the
overall degree distribution. If not, then how quickly does it change, and is it per-
haps periodical? To this end we present autocorrelation data of the degree time-
series of fixed nodes in Figure 5. The band indicates a 99% confidence interval
assuming the data is random. The autocorrelation of the series d(i, 1), ...d(%, K)
for a given time lag k is defined as

SRR, §) — )G, + k) — d)
S (d(i, g) — dy)?

3

which expresses the correlation of pairs of degree values separated by k cycles.



protocol Dsoo d o
(rand,head,push) 52.623 52.703 1.394
(tail,head,push) 54.785 55.519 2.690
(rand,head,pushpull) 52.717 52.933 1.756
(tail,head,pushpull) 53.916 53.888 2.176
(rand,rand,push) 58.404 60.804 19.062
(
(
(

tail,rand,push) 58.844 58.746 17.287
rand,rand,pushpull) 59.569 61.306 13.886
tail,rand,pushpull) 59.666 58.616 9.756

Table 2. Statistics describing the dynamics of the degree of individual nodes.

T T T T
(rand,rand,push) -

(rand,rand,pushpull) -------
o (rand,head,push) -------
h (rand,head,pushpull) ——

0.8

autocorrelation

0 20 40 60 80 100 120 140
lag
Fig. 5. Autocorrelation of the degree of a fixed random node as a function of time lag,
measured in cycles, computed from a 300 cycle sample. Protocols (tail,,*) are omitted
for clarity.

For the correct interpretation of the figure observe that (rand,head,pushpull)
can be considered practically random according to the 99% confidence band,
while the time series produced by (rand,head,push) shows some weak high fre-
quency periodic behavior. The protocols (x,rand*) appear to show low frequency
periodic behavior with strong short-term correlation, although to confirm that
further experiments are necessary. This means that apart from having a higher
oscillation amplitude, random view selection also results in a much slower oscil-
lation.

7 Self-healing capacity

As in the case of the degree distribution, the response of the protocols to a
massive failure has a static and a dynamic aspect. In the static setting we are
interested in the self-healing capacity of the converged overlays to a (potentially
massive) node failure, as a function of the number of failing nodes. Removing a
large number of nodes will inevitably cause some serious structural changes in
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the overlay even if it otherwise remains “usable,” that is, at least connected. In

the dynamic case we would like to learn if and how the protocols can repair the
overlay after a severe damage.

The effect of a massive node failure on connectivity is shown in Figure 6.
In this setting the overlay in cycle 300 of the random initialization scenario
was used as converged topology. From this topology, random nodes were re-
moved and the connectivity of the remaining nodes was analyzed. In all of the
100 x 8 = 800 experiments performed we did not observe partitioning until re-
moving 69% of the nodes. The figure depicts the number of the nodes outside
the largest connected cluster. We observe consistent partitioning behavior over
all protocol instances: even when partitioning occurs, most of the nodes form
a single large connected cluster. Note that this phenomenon is well known for
traditional random graphs [21].

In the dynamic scenario we made 50% of the nodes fail in cycle 300 of the
random initialization scenario and we then continued running the protocols on
the damaged overlay. The damage is expressed by the fact that, on average, half
of the view of each node consists of descriptors that belong to nodes that are no
longer in the network. We will call these descriptors dead links. Figure 7 shows
how fast the protocols repair the overlay, that is, remove dead links. Based on
the static node failure experiment it was expected that the remaining 50% of
the overlay is not partitioned and indeed, we did not observe partitioning with
any of the protocols.

8 Discussion

In our analysis of the output of the experiments presented above we first concen-
trate of the two main questions we posed: convergence and randomness. Then we
move on to discuss the effects of the design choices in the three dimensions of the
protocol space: peer selection, view selection, and symmetry of communication.
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Convergence Figures 2(a), 3(c) and 3(d) illustrate especially well that the proto-
cols converge to the same clustering coefficient from extremely different starting
conditions. Although it is somewhat less evident due to the different scales of
the plots in Figure 3, average path length and average degree converge just as
well. Note that the (x,,push) protocols are unstable and converge very slowly
in the growing overlay scenario. We will return to this issue below.

Also note that in the case of the lattice initialization scenario the initial
diameter is very large but even in that case we observe rapid convergence to the
desirable low diameter topology (Figure 3(a)).

Randomness Let us compare the overlays with random graphs in which the view
is filled with uniform random samples of the other nodes. The behavior of the
protocols we examined shows a rather colorful picture with respect to different
graph properties.

In the case of average path length, clustering coefficient and average degree
it is clear that protocols (x,rand,pushpull) give us the closest approximation of
the random topology, with the tail peer selection being slightly more random
(see Figure 3). However, when looking at other aspects, we see a rather different
picture. Degree distribution protocols (rand,head,) are the closest to random
distribution while protocols (x,rand,*) are rather far from it (see Figure 4).

In all cases, we can observe that the clustering coefficient is significantly
larger than that of the random graph and at the same time the average path
length is almost as small. This adds all our overlay topologies to the long list of
complex networks observable in nature, biology, sociology, and computer science
that have a so-called “small-world” topology [1].

View selection The view selection algorithms are significantly different. Head
view selection results in a more random degree distribution than the others, and
it results in much less autocorrelation of the degree of a fixed node over time



(Figures 4 and 5 and Table 2). These properties make the overlays using head
view selection much less vulnerable to directed attacks targeting large-degree
nodes because there are no nodes with very large degree and the degree of a node
changes very quickly anyway. This also means that there are no communication
hot-spots in those overlays, which could result in scalability problems.

Also, head view selection repairs the overlay exponentially fast whereas ran-
dom view selection can at best achieve linear speed, which can hardly be consid-
ered scalable (Figure 7). The only scenario when head view selection is not de-
sirable is temporary network partitioning. In that case, with head view selection
all partitions will forget about each other very quickly and so quick self-repair
becomes a disadvantage. In practical applications the slow and quick self-healing
mechanisms should be combined.

Symmetry of communication The symmetry of communication is also an impor-
tant design choice. In particular, push has severe problems dealing with “bot-
tleneck” topologies, like the star-like topology implicitly defined by the growing
overlay scenario. In that case, some protocols using the push communication
model were not even stable enough with respect to connectivity to participate
in the experiments (Table 1), and even those that were included showed very
slow convergence. The reason is that nodes that join the network in the growing
scenario can get information only if the contact node pushes it to them which
is very unlikely to happen because the contact node communicates only once in
each cycle, just like the other nodes.

It appears that this parameter plays a more prominent role in characterizing
the overall behavior of the various protocols. In general, the performance of
push-pull is clearly superior compared to push-only approaches.

Peer selection In the case of peer selection we cannot observe drastic differ-
ences. In general, applying the tail selection algorithm results in slightly more
randomness and slightly slower convergence at the same time. The only sce-
nario in which opting for tail selection results in clear performance degradation
is self-healing (Figure 7). In that case, (tail,head,push) converges significantly
slower than (rand,head,push), although both converge still very quickly. Also,
(tail,rand,push) slowly increases the amount of dead links which is especially
undesirable.

9 Related work

Complex networks The assumption of uniform randomness has only fairly re-
cently become subject to discussion when considering large complex networks
such as the hyperlinked structure of the WWW, or the complex topology of the
Internet. Like social and biological networks, the structures of the WWW and the
Internet both follow the quite unbalanced power-law degree distribution, which
deviates strongly from that of traditional random graphs. These new insights
pose several interesting theoretical and practical problems [3]. Several dynamic



complex networks have also been studied and models have been suggested for ex-
plaining phenomena related to what we have described in the present paper [7].
This related work suggests an interesting line of future theoretical research seek-
ing to explain our experimental results in a rigorous manner.

Unstructured overlays There are a number of protocols that are not covered
by our generic scheme but that are potentially useful for implementing peer
sampling. An example is the Scamp protocol [10]. While this protocol is reactive
and so less dynamic, an explicit attempt is made towards the construction of a
(static) random graph topology. Randomness has been evaluated in the context
of information dissemination, and it appears that reliability properties come
close to what one would see in random graphs. Some other protocols have also
been proposed to achieve randomness [18,22], although not having the specific
requirements of the peer sampling service in mind.

Structured overlays A structured overlay [26,25,27] is by definition not dynamic
so to utilize it for implementing the peer sampling service random walks or other
additional techniques have to be applied. It is unclear whether a competitive im-
plementation can be given considering also the cost of maintaining the respective
overlay structure. Structured overlays have also been considered as a basic mid-
dleware service to applications [5]. Another issue in common with our own work
is that graph theoretic approaches have been developed for further analysis [19].
Astrolabe [28] needs also be mentioned as a hierarchical (and therefore struc-
tured) overlay which although applies (non-uniform) gossip to increase robust-
ness and to achieve self-healing properties, does not even attempt to implement
or apply a uniform peer sampling service. It was designed to support hierarchical
information dissemination.

10 Concluding remarks

In this paper we have identified peer sampling as an abstract middleware service.
We have shown that dynamic gossip-based unstructured overlays are a natural
candidate for implementing this service due to their reliability and scalability.
Whereas there has been a lot of work in analyzing the behavior of structured
overlay networks, this is the first attempt to analyze the behavior of a class of
unstructured overlays, which so far have been simply assumed uniform random.

The main conclusion of our experiments is that the gossip-based construc-
tions of overlays through partial views leads to many different topologies, none of
which actually resembles traditional random graphs. Instead all these construc-
tions belong to the family of small-world graphs characterized by small diameter
and large clustering. Besides, many of the implementations result in highly un-
balanced degree distribution. This observation indicates that gossip-based peer
sampling implementations have strong links to the field of complex networks and
self-organizing systems, and more generally to statistical physics, a fact which
has been largely overlooked so far. This links give hope for the possibility of



the adaptation of the well established theoretical results of dynamic complex
networks [7].

When considering the stable properties of various protocols, that is, which
emerge from convergent behavior, it also becomes clear that different parameter
settings lead to very different properties, which can be exploited according to
the needs of the targeted application. For example, a strong self-healing topology
may not be appropriate in the presence of temporary network partitions. In many
cases, combining different settings will be necessary. Such a combination can,
for instance, be achieved by introducing a second view for gossiping membership
information and running more protocols concurrently.
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