
75

Large-Scale Ontology Matching: State-of-the-Art Analysis

PETER OCHIENG and SWAIB KYANDA, Makerere University, Uganda

Ontologies have become a popular means of knowledge sharing and reuse. This has motivated the devel-
opment of large-sized independent ontologies within the same or different domains with some overlapping
information among them. To integrate such large ontologies, automatic matchers become an inevitable so-
lution. However, the process of matching large ontologies has high space and time complexities. Therefore,
for a tool to efficiently and accurately match these large ontologies within the limited computing resources,
it must have techniques that can significantly reduce the high space and time complexities associated with
the ontology matching process. This article provides a review of the state-of-the-art techniques being ap-
plied by ontology matching tools to achieve scalability and produce high-quality mappings when matching
large ontologies. In addition, we provide a direct comparison of the techniques to gauge their effectiveness
in achieving scalability. A review of the state-of-the-art ontology matching tools that employ each strategy
is also provided. We also evaluate the state-of-the-art tools to gauge the progress they have made over the
years in improving alignment’s quality and reduction of execution time when matching large ontologies.

CCS Concepts: • Information systems → Entity resolution;

Additional Key Words and Phrases: Survey, ontology mapping, mapping repair, repair, scalability

ACM Reference format:

Peter Ochieng and Swaib Kyanda. 2018. Large-Scale Ontology Matching: State-of-the-Art Analysis. ACM

Comput. Surv. 51, 4, Article 75 (July 2018), 35 pages.
https://doi.org/10.1145/3211871

1 INTRODUCTION

Ontologies play a key role in the sharing and reusing of knowledge among software agents [104].
Due to their importance, a number of ontologies have been developed with each ontology de-
scribing a given domain from its subjective view. This has resulted in the existence of multiple
ontologies in the same or different domains with some level of heterogeneity among them [31].
To resolve this heterogeneity, ontology matching is usually performed to find correspondences
between semantically related entities of different ontologies [31]. Consequently, many tools have
been developed to perform ontology matching [79] [99]. However, with the increased pervasive-
ness of ontologies, challenges have emerged that the ontology matching tools have to address to
establish high-quality correspondences between ontologies within limited computing resources
[82]. In this article, we focus on reviewing tools and techniques that have been developed to-
ward matching large ontologies. Large ontologies such as Foundational Model of Anatomy (FMA)
[87], National Cancer Institute (NCI) [35], Systematized Nomenclature of Medicine-Clinical Terms

Authors’ addresses: P. Ochieng and S. Kyanda, Makerere University P.O BOX 7062, Kampala Uganda; emails: {onexpeters,
kswaibk}@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 0360-0300/2018/07-ART75 $15.00
https://doi.org/10.1145/3211871

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

https://doi.org/10.1145/3211871
mailto:permissions@acm.org
https://doi.org/10.1145/3211871

75:2 P. Ochieng and S. Kyanda

(SNOMED CT) [95], Gene Ontology (GO) [10], Cyc [68], Sumo [83], and the like, present scalability
challenge to the tools matching them. Therefore, for a tool to handle the task of matching such
large ontologies, they require additional techniques beyond those required to match medium- and
small-sized ontologies. Some of the key challenges that large ontologies pose to the tools matching
them include:

Increased Complexity of the Matching Process. Ontology matching tools should generate map-
pings that have high precision and recall regardless of the size or type of the input ontologies.
However, as the sizes of the input ontologies increase, so does the number of axioms that an on-
tology mapping tool has to reason over to generate accurate and complete mappings. This demand
for more reasoning power increases the overall complexity of the matching process, resulting in
considerable decrease in mapping quality with respect to standard measures of precision and re-
call. Therefore, an increase in the sizes of input ontologies penalizes the quality of mappings a tool
generates [88].

Demand for More Memory. To match entities of two input ontologies, a naive approach entails
comparing each entity of the source ontology against all entities of the target ontology. This Carte-
sian product approach of matching entities of two input ontologies results in a space complexity
of O(n2) (assuming that each input ontology has n entities). A space complexity of O(n2) entails
maintaining in memory several similarity values between the entities of the source and the target
ontologies. This problem is further compounded by the fact that most ontology matching tools
integrate multiple matchers to improve the quality of mappings they produce. Consequently, the
number of similarity values that will have to be maintained in memory will be k(n2), with k being
the number of matchers composed in a tool. An ontology matching process with a space complex-
ity of O(n2) can easily lead to an out-of-memory error in case of a large n.

Increased Execution Time of the Mapping Process. Similar to the space complexity, the matching
of two input ontologies in a Cartesian product fashion has a time complexity of O(n2) if each on-
tology has n entities. If we consider the efficiency of a matcher and assume that for each similarity
computation the matcher takes time t , then the overall time complexity of the matching process
is O(n2 × t). Unfortunately, users are generally impatient and a process that has a time complex-
ity O(n2 × t) would require them to significantly wait for the final mappings even for a modest
number of n entities.

Therefore, for a tool to be fit for the task of matching large ontologies, it has to incorporate
strategies to handle the complex matching process and reduce the search space and time com-
plexities. These challenges help us in focusing this review. A number of articles already exist in
literature that provide the-state-of-the-art review in the ontology matching domain. Key among
the papers include References [79], [86], and [99]. This review is mainly focused on two key aspects
of matching large ontologies. First, we discuss scalability techniques being employed by different
ontology matching tools to reduce high time and space complexities associated with matching
large ontologies. Second, we provide a discussion on techniques that ontology matching tools are
employing to establish high quality mappings when matching large ontologies. Unlike the review
in Reference [86], which also provides a discussion on large ontology matching, we provide a low-
level review on each scalability technique being discussed. Further, we provide a direct comparison
of a given set of tools applying a given scalability technique with a goal of highlighting how their
implementations differ. Table 1 provides a summary of our contributions as compared to Shvaiko
and Euzenat [99], Rahm [86], and Otero-Cerdeira et al. [79]. It summarizes four key aspects covered
in the article, i.e., techniques for reducing space and time complexities, techniques for ensuring
quality mappings, and the progress tools have made so far.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:3

Table 1. Showing the Contributions of This Article

Technique

Shvaiko

and

Euzenat

(2013)

Rahm

(2011)

Otero-

Cerdeira

et al.

(2015)

This

Article

Ontology Partitioning
Module extraction ✗ ✗ ✗ �
Complete ontology partitioning ✗ � ✗ �
Use of Data Structures

Indexes (structural and lexical) ✗ ✗ ✗ �
HashMap or Hashtable ✗ ✗ ✗ �
Use Ontology structure

Exploiting ontology’s structural
relationships to reduce search
space

✗ � ✗ �

Self Tuning Match

Self tuning match ✗ � ✗ ✗
Parallel Matching

Parallelazation based on
instruction vs data relationship

✗ ✗ ✗ �

Parallelazation based on matcher
implementation.

✗ � ✗ �

Progress in large ontology
matching

� ✗ ✗ �

Mapping Repair

Pay as you go technique ✗ ✗ ✗ �
Automatic repair ✗ ✗ ✗ �

1.1 Definition of Terms

In this section, we define key terms used in this article to make it self-sufficient.

Ontology Matching. The process of finding semantic relationships that exist between entities of
two ontologies. For example, in Figure 1, ontology matching would entail establishing the rela-
tionships that exists between concepts of Ontology 1 and Ontology 2. In ontology matching, key
relationships that a matching tool seeks to establish between entities of two ontologies are equiv-
alence (≡), subsumption(�), and Disjointness (A � B � ⊥). In Figure 1, an ontology matching tool
may establish that {Person ≡ Agent}, {Author � Person}, and {Documents � Person � ⊥}.

Correspondence. Given two ontologies OT and OS , a correspondence between OT and OS is a
triple 〈e1, e2, r 〉 with the entity e1 ∈ OS , e2 ∈ OT and r is the semantic relationship that exists be-
tween e1 and e2. It can also be referred to as a mapping. In some instances, a correspondence can
be represented as a 4-uple; in such a case, the degree of confidence of a correspondence is also
included, i.e., 〈e1, e2, r ,v〉 where v ∈ [0, 1] is the confidence level of the semantic relationship r. A
possible correspondence from Figure 1 is 〈 Person,Agent,≡,0.77〉.

Alignment. This is a set of correspondences between two ontologies. For example, in Figure 1, a
possible alignment A is A = {〈Person,Agent,≡,0.77〉, 〈Document,Documents,≡,0.96〉,
〈WrittenBy,hasWritten,≡,0.90〉, 〈PaperReview,Review,≡,0.84〉}.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:4 P. Ochieng and S. Kyanda

Fig. 1. Fragments of ontologies.

Matcher. An automatic matching algorithm employed by an ontology matching tool to establish
an alignment between two ontologies.

Similarity Matrix. Given a source and target ontology S andT with n and m entities, respectively,
a similarity matrix M = (si j)i=1, ...n, j=1, ...m generated by a matcher L is a matrix where each entry
si j shows the similarity value between entities i and j with i ∈ S and j ∈ T .

Precision. A measure of the ratio of correctly found correspondences over the total number
of returned correspondences as shown in Equation (1). Precision is used to check the degree of
correctness of the ontology matching algorithm:

precision =
correct correspondences

total returned correspondences
. (1)

For example, in Figure 1, if a matcher L generates a final alignment A1 = {〈Person,Agent,≡,0.77〉,
〈Document,Documents,≡,0.96〉, 〈Reviewer,Review,≡,0.84〉}, taking the alignment A as the refer-
ence alignment, then the mapping 〈 Reviewer,Review,≡,0.84〉} is flagged as a wrong mapping. The
precision of the alignment A1 is

precision =
2

3
= 0.6667.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:5

Recall. It measures the ratio of correctly found correspondences over total number of expected
correspondences as shown in Equation (2). It is used to check the degree of completeness of an
ontology matching algorithm:

Recall =
correct correspondences

expected correspondences
. (2)

The recall of the alignment A1 when A is the reference alignment is

Recall =
2

4
= 0.5.

Even though precision and recall are widely used and accepted measures, in some occasions it
may be preferable having a single measure to compare different systems or algorithms. Moreover,
systems are often not comparable based solely on precision or recall, because the one that has a
higher recall may have a lower precision and vice versa [31]. Therefore, F-measure was introduced
according to Equation (3):

F −measure =
2 × recall × precision
precision + recall

. (3)

F-measure of the alignment A1 is

F −measure =
2 × 0.6667 × 0.5

0.6667 + 0.5
= 0.5714.

In each subsequent section of this article, we (1) describe a specific technique, (2) compare tools
using the technique, (3) give a review of the tools using the technique, and (4) give some insights
on the technique being discussed. It is also important to note that tools have progressively changed
from the original developed version, so for each technique we discuss the version of the tool that
implements the technique.

2 SCALABILITY TECHNIQUES

In this section, we review techniques and tools that are geared toward achieving scalability in
ontology matching. We use the categorization proposed in Reference [86]:

(1) Reduction of search space techniques.
(2) Parallel matching.

2.1 Reduction of Search Space

Most ontology mapping tasks involve producing 1:1 cardinality mappings. This, therefore, means
that given an entity ei in the source ontology, the vast majority of entities in the target ontology
need not to be directly compared to the entity ei through similarity computations. To reduce the
quadratic complexity n2 of computing similarity values between entities of source and the target
ontologies in an all-against-all fashion, for each entity ei of the source ontology, the number of
potential entities from the target ontology that it can be matched with should be kept at a minimum
[34]. The entities of the target ontology that are eliminated are those that will yield zero or low
similarity values in case of similarity computations. Techniques that are currently being used by
ontology matching tools to reduce search space include:

(1) Ontology partitioning.
(2) Use of data structures.
(3) Use of ontology structure.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:6 P. Ochieng and S. Kyanda

2.1.1 Ontology Partitioning. The current forms of ontology partitioning that ontology match-
ing tools are implementing to support ontology matching process include:

(1) Module extraction.
(2) Complete ontology partitioning.

Module Extraction. The ontology matching process relies heavily on reasoning over the relation-
ships that exist between entities of an ontology to disambiguate entities’ meanings. However, the
reasoning process is costly in terms of its memory demands and execution time, especially for large
ontologies; therefore, ontology matching tools are implementing strategies that avoid reasoning
over an entire ontology if only a fragment of it can provide the required answer. Modularization
of an ontology is a strategy that views an ontology as an artifact similar to a program that can
get quite large and complex, hence extracting a module from it and reasoning over the module
as opposed to the whole ontology, which can significantly speed up the reasoning process and
optimize memory utilization. The extracted module must guarantee coverage, i.e., it must capture
all information contained in an ontology related to a set of entities to enable effective reasoning
(see also the definition of justification in Definition 8). Research on module extraction has been
explored in References [21], [37], and [39]. Module extraction has been used in ontology matching
mostly in the alignment repair process as described in Section 3.2 to speed up the reasoning pro-
cess of detecting coherence violations in the alignment produced by a tool. Tools that implement
modularization include LogMap2 [59] and AML [89].

Complete Ontology Partitioning. Here, a large ontology is broken down into sub-ontologies (par-
titions) based on some selected criteria. Ideally, an ontology should be partitioned into blocks
representing stand-alone topics that exist in it; however, the goal for which ontology partition-
ing is sought dictates how it is partitioned. Apart from ontology matching purposes, an ontology
can also be partitioned for reuse and maintenance purposes. The standard procedure for matching
ontologies based on ontology partitioning involves four key steps:

(1) Partition the source (OS) and the target ontologies (OT) based on a given partitioning
algorithm.

(2) For each partition (Pi) ∈ OS , find its likely match (Pj) ∈ OT where |Pj | ≥ 1 with an ideal
case being one to one match.

(3) Match entities between the matched partitions.
(4) Establish the final alignment.

Other methods that can be considered are extensively discussed in Reference [103]. In addition to
reducing the search space, complete ontology partitioning plays three more key roles in advancing
scalability:

(1) Maintaining effectiveness of a matching tool.
(2) Supporting parallelization.
(3) Reducing time complexity.

Reducing Search Space. To match entities of two ontologies, a naive non-scalable approach would be
to compare each entity of the source ontology against all entities of the target ontology. This makes
the number of comparison computations between the pairs of entities of source and the target
ontologies to increase quadratically with the number of entities in the two ontologies. To avoid
the Cartesian product of the entities of the source and the target ontologies, partitioning the input
ontologies is usually performed. Partitioning of an ontology is a divide and conquer technique that
divides a large ontology into k blocks or modules. By partitioning the input ontologies, assuming

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:7

Fig. 2. Demonstrating how ontology partitioning supports parallelization.

each of the ontology has n entities to be matched, and the partitioning method results in k blocks
(all of the same size containing n

k
entities), the resulting number of entity pair comparisons reduces

the space complexity to O (n2

k
) [86] [103]. This has the double effect of speeding up the matching

process and better utilization of the memory.

Supporting Parallelization. To reduce the execution time of the large-scale ontology matching
process, the matching process task can be divided into multiple smaller processes and each process
executed in its processor in parallel with other processes. Partitioning of input ontologies supports
parallelization by enabling the matched blocks (partitions) of the source and the target ontologies
to be executed in different processors or nodes in parallel as shown in Figure 2. Exploiting parti-
tioning to support parallelism has specifically been used in VDoc+ [111] and [107], where they use
MapReduce framework [19] to implement the matching process in parallel. In MapReduce, input
data is split into key-value pairs. These pairs are then partitioned into different reducers based on
shared keys. All values that share the same keys are partitioned together. Different partitions can
then be executed in parallel in different computing nodes. In VDoc+, for each entity ei , they identify
important words from the entity’s annotations and local name, which can be used to discriminate
(classify) the entity. TF-IDF is used to rank the important words of an entity. Each important word
of an entity acts as the key while the entity is the value. Entities that share the same words as
their keys are partitioned together. Matching of entities is restricted only to entities that share the
same key (i.e., only entities that are in the same partition can be matched). The matching process
in each partition is then executed in different nodes in parallel. In Reference [107], they first inde-
pendently partition the input ontologies using the partitioning algorithm proposed in Reference
[45]. They then align the two most similar partitions of the source and target ontologies. Two
aligned partitions are assigned a unique key, which is used to identify them. These partitions are
then fed into the reducer with their respective keys. Matching of entities in restricted to partitions
with the same key. The matching tasks are executed in parallel in different nodes. SPHeRe [5] also
proposes creation of subsets of datasets from the input ontologies such that the different datasets
will be executed at different processing units (PUs) in parallel.

Maintaining Effectiveness of a Matching Tool. An ontology matching tool should be able to main-
tain the quality of mappings it produces with regard to standard measures of precision and recall,
regardless of the type and sizes of input ontologies being matched. However, as the sizes of the
input ontologies increase, so does the number of axioms that a tool has to reason over for it to

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:8 P. Ochieng and S. Kyanda

establish mappings between entities of the input ontologies. This demand for increased reasoning
when matching large ontologies increases the level of complexity of the matching process resulting
in a considerable decrease in efficiency (precision, recall) of the mappings that an automatic align-
ment tool produces [88]. One key strategy of mitigating this problem is by partitioning the source
and the target ontologies. After partitioning the input ontologies, the most similar sub-ontologies
of the source and target ontologies are then matched. Different matched sub-ontologies of the in-
put ontologies can then be fed into the ontology matching tool for their entities to be aligned. In
this case, matching of entities is restricted to only those entities within matched sub-ontologies.
Consequently, reasoning is restricted to only the axioms that exist in the matched sub-ontologies,
hence reducing matching complexity. The final alignment between the two input ontologies is the
union of all mappings from different mapped sub-ontologies. Through partitioning, the size of an
ontology matching load can be controlled to that which a tool can handle effectively without com-
promising its efficiency. Here, ontology partitioning is seen as a means of reducing the complexity
of the matching process.

Reducing Time Complexity. Given the source and the target ontologies Os and Ot , respectively,
if each ontology has n entities and each pairwise matching task between an entity ei ∈ Os and
ej ∈ Ot takes time t, then the entire matching process of the two ontologies takes (n2 × t) for a case
of Cartesian product matching. However, if each of the ontologies is partitioned into k partitions,
and entities’ matching is restricted to matching entities between the matched partitions of the

source and the target ontologies, then the time complexity is reduced to (n2

k
× t).

Requirements of an Ontology Partitioning Algorithm. Despite these benefits of ontology parti-
tioning to the ontology matching process, if the partitioning is done poorly, it can be risky and can
easily alter the original structure of ontology, therefore resulting in a low quality alignment [86].
Matching of the source and the target ontologies’ partitions can also introduce new time and space
complexities if the partitions are many due to small-sized partitions produced, hence eroding the
benefits of ontology partitioning to the matching process. Consequently, an ontology partitioning
algorithm that produces partitions geared toward ontology matching should:

(1) Produce partitions that are optimally small. An optimum size should be set to avoid the
partitions either being too small, hence introducing new time and space complexities dur-
ing matching the source and the target ontologies’ partitions or being large hence not
reducing the search space significantly.

(2) Allow some level of redundancy between partitions of a given ontology [86] [94], i.e., al-
lowing some axioms to overlap from one partition to another. This increases the reasoning
power and robustness within a partition, which is important in ontology matching.

(3) Minimize the distance between the entities within a partition. Distance in this context is
in terms of similarity of entities. Similar entities should be partitioned together.

(4) Since one of the goals of partitioning is to reduce time complexity, the partitioning algo-
rithm should be able to partition an ontology such that

T (P) < Tm (O) − {Tm (P) +Tm (E)} . (4)

Where T(P) is the ontology partitioning time, Tm (O) is the time that an algorithm would
have taken to match entities of two ontologies without partitioning, Tm (P) is the time
taken to match partitions of the source and the target ontologies and Tm (E) is the time
for matching entities of all matched partitions. This is to ensure that partitioning provides
benefits in reduction of time complexity.

(5) Produce locally correct and complete partitions, i.e., the relationships involving a given
atomic concept, role, or individual entailed in the partitions should also be entailed in the

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:9

original ontology. Properties that ensure a partition is locally correct and complete are
introduced in Reference [39].

Definition 1. Let O be an OWL-ontology to be partitioned with signature S (O) = (C,R, I), where
C,R,I represent sets of atomic concepts, roles, and individuals. A partition Pi (O) ⊆ O is locally
correct and complete for an atomic concept A ∈ C in O if it meets the following conditions:

(1) Pi (O) |= A � B iff O |= A � B ∀B ∈ C .
(2) Pi (O) |= A(a) iff O |= A(a) ∀a ∈ I .

The two conditions ensure that the partitions do not introduce new relationships between enti-
ties that do not exist in the original ontologies. The same properties can be extended for atomic
roles and individuals as demonstrated in Reference [39]. There are many ontology partitioning
algorithms that exist in literature. A review can be found in Reference [80]. However, not all on-
tology partitioning algorithms produce partitions tailored for ontology matching. Therefore, there
is a need to evaluate an algorithm against the properties enumerated above to gauge if it is fit for
partitioning an ontology for matching purposes.

Ontology Partitioning Techniques. According to Reference [1] ontology partitioning techniques
can be categorized into two groups:

(1) Graph-based approach.
(2) Logic-based approach.

Graph-Based Approach. This approach applies graph-based algorithms to traverse the ontology
hierarchy to extract partitions. The technique is scalable since it avoids the reasoning approach,
which for a large ontology results in high space and time complexities [1], however it may produce
incomplete partitions since it ignores the semantics modeled in the underlying ontology language.
Research works in References [16] [27] [45] [66] [77], [93], and [96] propose ontology partitioning
algorithms by applying graph-based approaches.

Logic-Based Approach. This approach uses description logic to partition an ontology. It reasons
over the relationships modeled in the ontology to generate more complete partitions as compared
to the graph-based approach. Due to its dependence on reasoning, it is less scalable than the graph-
based approach. This technique is implemented in research such as References [36], [37], and [38].

Comparing Tools That Use Partitioning in Ontology Matching. In this section, we compare ontol-
ogy matching tools that use partitioning to achieve scalability. We specifically answer the following
questions for each tool:

(1) Does it use module extraction or complete partitioning?
(2) What is the key purpose for partitioning, i.e., to achieve parallelization or search space

reduction?
(3) Does it use a graph-based or logic-based technique for ontology partitioning?
(4) Does it achieve scalability? To gauge scalability of a tool, we check if a tool was

able to complete all tasks in a large biomedical track at the OAEI conference during
its participation—or rely on the results reported in the article reporting the tool’s
performance.

(5) Which part of the ontology matching process is the partitioning applied repair or matching
entities?

The summary of the analysis is given in Table 2. From the analysis, the graph-based technique is
the most popular way of partitioning ontology among the ontology matching tools that adopt

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:10 P. Ochieng and S. Kyanda

Table 2. Comparing Tools That Use Partitioning in Ontology Matching

Tool
Modular

extraction
Complete

partitioning Parallelization

Search
space

reduction
Logic

based?
Graph
based? Scalable?

LogMap2 Yes No No Yes Yes No Yes

AML Yes No No Yes Yes No Yes

DKP-AOM No Yes No Yes Yes No No

COMA++ No Yes No Yes No Yes Yes

Falcon-AO No Yes No Yes No Yes Yes

COGOM No Yes No Yes No Yes Yes

Anchor-flood No Yes No Yes No Yes Yes

Optima+ No Yes No Yes No Yes Yes

GOMMA Yes No No Yes No Yes Yes

VDoc+ No Yes Yes Yes No No Yes

Reference
[107]

No Yes Yes Yes No Yes Yes

partitioning in the matching process. This may be attributed to its scalability nature. In most
tools, partitioning is mainly geared toward search space reduction. Apart from DKP-AOM, all
other tools achieve scalability making ontology partitioning an effective way of attaining scal-
ability in ontology matching process. DKP-AOM does not achieve scalability since it relies on
owl : disjointW ith axiom to perform partitioning. In most cases, ontologies are modeled with very
few explicit owl : disjointW ith axioms, hence generating partitions based on disjoint axiom may
still generate large partitions, hence no significant reduction in the search space. It should be noted,
however, that LogMap and AML only use modularization in the ontology alignment repair process,
hence partitioning is not their key way of achieving scalability.

In this section, we review some of the ontology matching tools that use partitioning as way of
reducing time complexity.

DKP-AOM [32] partitions an ontology along owl : disjointW ith axioms that are modeled in the
ontology. Despite being the ideal case of partitioning, most ontologies are modeled without ex-
plicitly including owl : disjointW ith axioms therefore limiting the effectiveness of partitioning an
ontology using owl : disjointW ith axiom. This may explain why the tool fails to complete tasks in
large biomedical ontologies track of OAEI.

COMA++ [3] [67] uses partitioning during ontology matching. It refers to each partition as a
fragment. The fragment matching works in two stages. In the first phase, the fragments of a speci-
fied type (e.g., user-specified fragments or subschemas such as relational tables or message formats
in large XML schemas) are determined and compared with each other to identify the most similar
fragments between the two schemas (ontologies) being matched. The search for similar fragments
is similar to partition matching. In the second phase, entities of the matched fragments are aligned.

Falcon-AO [52] operates in three phases to address large ontology matching. It first partitions
entities of the input ontologies into a set of clusters. It then matches the clusters from the source
and the target ontologies based on pre-calculated anchors. It finally performs matching of concepts.
Matching of concepts is restricted to to the concepts that are within matched clusters.

COGOM [91] splits input ontologies into partitions using the notion of concept network. The
partitions of an ontology are created such that semantically similar concepts are partitioned to-
gether. Similar partitions of the source and target ontologies are then matched. Entity matching is
restricted to matched partitions hence significantly reducing search space.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:11

Anchor-flood [20] addresses the scalability issue by partitioning the input ontologies. It first par-
titions an ontology by using the taxonomical and disjoint relations of the concepts in the ontology
hierarchy. It then produces concept-level clusters by aggregating similar types of concepts and
avoiding disjoint concepts. Finally, schema level matching algorithm is used to get concept-level
cluster alignment.

Optima+ [50] partitions the source and the target ontologies by exploiting the structure of the
ontologies. It then compares each block of the source ontology against those of the target ontology
to find the matching partitions. Finally, it establishes an alignment by matching entities of the
matched partitions.

GOMMA [41] is a tool that matches large ontologies in the life science domain. GOMMA iden-
tifies the relevant part of the broader ontology between the two input ontologies that are relevant
(has more overlap) to be matched with the smaller ontology.

2.1.2 Use of Data Structures.

Indexing. The most common data structure that ontology matching tools are exploiting to reduce
search space during ontology matching is indexing. Indexing is commonly used in information
retrieval to speed up information search [7]. In ontology matching, indexing entails creating an
inverted index for either one of the input ontologies or both them. There are two main types of
indexes that can be created during ontology matching:

(1) Structural index.
(2) Lexical index.

Structural Indexing. During ontology matching, establishing hierarchical relationships that exists
between entities of an ontology is crucial in disambiguating the meaning of an entity. The struc-
tural information of a given entity helps in performing semantic verification and similarity prop-
agation [74]. However, to establish the hierarchical information of an entity in a large ontology
is costly in terms of its memory requirements and execution time. Consequently, efficient access
to hierarchical information of entities is key for a tool to achieve scalability. One way of ensur-
ing efficient access to hierarchical information of an entity is through structural indexing of an
ontology such that transitive closure of the “IS-A” and “PART-OF” relationships of an entity can
be answered more efficiently. Structural indexing of an ontology can be implemented by repre-
senting an ontology as a direct acyclic graph (DAG), and then the state-of-the-art techniques that
have been proposed to speed up reachability within DAGs can be used to index the DAG of the
ontology. Some of the research that proposes techniques to speed up reachability within DAG are
References [2], [51], [61] and [101]. Tools that implement structural indexing include LogMap [58],
which uses interval labeling technique proposed in Reference [2], and YAM++ [74] which indexes
the structure using bits.

Lexical Indexing. Here, indexation of an input ontology involves a named entity, its label name(s),
and annotations. Indexes are created by linking an entity to the normalized words that appear in its
local name, label(s), and annotation(s). Once the lexical indexes of the source and target ontologies
have been created, they are intersected to establish candidate mappings that exist between their
entities. By doing this, a Cartesian product comparison of input ontologies’ entities is avoided
hence reducing the search space. This kind of indexing has been applied in tools such as LogMap
[58] and YAM++ [74], and Reference [22].

Use of Hashmaps (or Hashtable). Some tools such as AML [34] and Eff2Match [11] apply the use
of hashmaps to reduce the search space. In this scheme, an entity is stored in the hashmap as the
key and its corresponding information such as the normalized words of its local name, label(s),

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:12 P. Ochieng and S. Kyanda

Table 3. Comparing Tools That Use Data Structures to Reduce Search Space

Tool

Data
structure

used
Year of

participation
Number
of task

Number
of tasks

completed Scalable?

Average

Execution
time for
all tasks

LogMap Indexes 2016 6 6 Yes 243

AML HashMap 2016 6 6 Yes 214

ServOMBI Indexes 2015 6 2 No did not
complete all
tasks

IAMA Indexes 2013 6 6 Yes 117

YAM++ Indexes 2013 6 6 Yes 344

and annotations are the values associated with the key. A key or value from the hashmap of one of
the input ontologies is then used to query the hashmap of the other input ontology directly, hence
reducing the search space from O(n2) to O(n).

Evaluation of Tools That Use Data Structures to Reduce Search Space. In this section, we evalu-
ate the effectiveness of data structures in achieving scalability in ontology matching. We use the
information reported at the OAEI conference in the year a tool participated. For a tool that has par-
ticipated in the OAEI conference in multiple years, we use the results reported in its most current
year of participation. A tool is rated as having achieved scalability if it was able to complete all
the tasks in the large Biomedical Ontology Track (BOT). The analysis is shown in Table 3. Out of
the five tools shown in Table 3, four of the tools, i.e., AML, LogMap, IAMA, and YAM++, achieved
scalability. Only ServOMBI failed to achieve scalability. This signals the effectiveness of the use of
data structures as means of achieving scalability in ontology matching. Other tools that employ
data structures such as SLINT+ and EXONA are instance matching tools, hence were not evaluated
in BOT, while CLONA focuses on multilingual ontologies, hence was also not evaluated in BOT.
Out of the eight tools discussed in this section, seven of them use indexes, making indexing the
most popular data structure being implemented by tools to achieve scalability.

Tools That Use Data Structures. In this section, we review some of the ontology matching tools
that use data structures technique as means of reducing search space

CLONA [110] is an ontology matching system that focuses on multilingual ontologies. It ad-
dresses quadratic complexity by using Lucene to develop an index of the concepts, relationships,
data types, and instances in the input ontology. It then runs a cross search between the source and
the target indexes of ontologies to establish initial candidate mappings of entities.

EXONA [15] is an ontology matching system solely for instance matching. It indexes instances
of input ontologies using URI of the instance. It then does a cross index query of the source and
the target ontologies indexes to establish initial candidate mappings.

LogMap Family [54] is a tool that uses logic reasoning to refine initial mappings. To generate
initial candidate mappings, it creates an inverted index of an ontology by using the labels of entities
together with their annotations. It then intersects the inverted indexes of the input ontologies to
establish entities of source and target ontology with matching string. This becomes initial mapping
candidates that need to be refined. LogMap currently has three variants: LogMaplt, LogMapC, and
LogMapBio.

IAMA [112] indexes the lexical information of a larger ontology between the target and source
ontology. The normalized entity names of the of the smaller ontology is then used to query the
created index to create initial mapping pairs.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:13

ServOMBI [64] uses indexing strategy to reduce the search space. It performs a terminological-
based inverted index, which is built from ontology entities. It also uses parallelization to speed up
indexing.

AgreementMaker Light (AML) [34] employs hashmaps cross-searches, i.e., searches where a key
in a hashmap is used to query another hashmap directly and thus take O(n). This strategy avoids
comparing all the elements of the source and the target ontologies.

SLINT+ [75] performs generation of candidates to be matched by using shared objects. If in-
stances share objects, then they are paired as candidates for matching. This helps to trim search
space and avoid all against all comparison.

YAM++ [73] [74]. To reduce the search space, YAM++ creates a context index for the larger
ontology between the source and the target ontologies. The context index contains all entities and
their respective annotations, all entities and their respective ancestors, and all entities and their
respective descendants. Lucene is used in the indexing. The entities of the smaller ontology is used
to query the index of the larger ontology to establish the initial candidate mappings.

2.1.3 Use of Ontology Structure. In OWL ontology, entities are linked through relationships that
are modeled in the ontology in form of axioms. OWL has class, property, and individual axioms that
model relationships between classes, properties, and individuals, respectively. Ontology matching
tools exploit these relationships to restrict the matching space of two ontologies. Some of the
techniques being used include: -

(1) The use of owl:disjointWith axiom. Given a source and target ontology Os and Ot , re-
spectively, if there exists a pair of entities (X ,X ′) ∈ Os and (Y ,Y ′) ∈ Ot such that Os |=
X � X ′ � ⊥ and Ot |= Y � Y ′, if according to some similarity computation X is matched
to Y, then the similarity computation between X ′ and its children and Y and its children
can be avoided. Likewise similarity computation between Y ′ and its children and X and
its children can be avoided.

(2) Use of similarity flooding as proposed in Reference [72]. Given a source and target ontol-
ogy Os and Ot , respectively, if there exists a pair of entities (X ,X)′ ∈ Os and (Y ,Y ′) ∈ Ot

such that Os |= X � X ′ and Ot |= ¬(Y � Y ′), if according to some similarity computation
X is matched to Y, then the pairwise similarity computation between X ′ and its children
andY ′ and its children can be avoided. Likewise, pairwise similarity computation between
Y ′ and its children and X and its children can be avoided.

Some of the tools that exploit this technique include:
CODI [46] is an ontology matching tool that uses Markov logic [26] to produce mappings. It

employs the principle of stability and coherence in the two ontologies to be aligned as proposed
in Reference [76] to restrict mapping space.

Lily [108] employs reduction anchors to address the challenge of scalability. Lily uses two
key strategies. If a1 ∈ O1 matches bp ∈ O2, the similarity calculation between the super and sub-
concepts of bp and the entity a1 can be skipped since a1 is already matched to bp , hence saving
time. If a1 ∈ O1 does not match bp , then the neighbor of a1 do not match bp as well, therefore the
similarity computation are skipped saving time.

2.2 Parallel Composition

To improve the performance of computer systems, processors are being manufactured with an
increasing number of cores. Likewise, to keep up with the ever-increasing computation power
of processors, programming languages are also developing libraries that programmers can use to
take advantage of the increased power of the processors. The libraries provide mechanisms of

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:14 P. Ochieng and S. Kyanda

distributing different tasks of a given process over the multiple cores so that they can be executed
in parallel. This speeds up the overall execution time of the entire process. Parallelism is mostly
exploited when executing processes with high time complexity. Ontology matching is one such
process; consequently, some ontology matching tools have explored the use of parallelism as means
of reducing the overall execution time of the process. Parallelization in ontology matching can be
discussed based on various implementation techniques that exist in literature [8]. In this review
article, we discuss parallelization in ontology matching tools under two key categories:

(1) Instruction vs data relationship.
(2) Matcher implementation.

2.2.1 Instruction vs Data Relationship. Under this categorization, the implementation of paral-
lelization is differentiated based on whether a similar instruction is executed on different datasets
or multiple instructions are executed on the same or different datasets. Here, parallelization is
implemented in three main ways [106]:

(1) Single instruction multiple data.
(2) Multiple instruction single data.
(3) Multiple instruction multiple data.

Single Instruction Multiple Data (SIMD). In this model, all PUs execute the same instruction on
different data elements [8]. In ontology matching, this model has been implemented by differ-
ent tools at different levels of the ontology matching process. SPHeRe [5] exploits SIMD during
the input ontologies loading stage, where the ontology load interface of SPHeRe executes the load
instruction on both the source and the target ontologies for the input ontologies to be loaded
into the memory in parallel. In the entity matching stage of the ontology matching process, SIMD
implementation is achieved by partitioning the input ontologies. This therefore means that the
application of SIMD in the entity matching stage of the ontology matching process also addresses
the problem of space complexity (see Section 2.1.1 on how partitioning of input ontologies re-
duces space complexity). VDoc+ [111] implements SIMD during the matching of entities stage.
It first uses MapReduce framework to partition the input ontologies into different independent
clusters (see Section 2.1.1 for more details). The clusters are then executed in parallel on different
processors. Here, all the clusters are processed by a single instruction, which is the use of cosine
similarity metric to compute similarities between entities of a given cluster. ServOMBI [64] utilizes
SIMD during the pre-processing stage of the ontology matching process where the terminology in-
dexing command is executed on both the source and the target ontologies. This allows the entities
of the source and the target ontologies to be indexed in parallel.

Multiple Instruction Single Data (MISD). In this implementation of parallelism, each PU executes
a different instruction on the same dataset [8]. This is the most common model currently being
exploited by ontology matching tools to achieve parallelism. It has been implemented at the en-
tity matching stage of the ontology matching process. Different matchers are executed in parallel
in different PUs to process the same input ontologies. For instance, if an ontology matching tool
integrates three matchers, i.e., string, structural, and semantic-based matchers, each matcher run-
ning on a given PU is executed on the same input ontologies. The final alignment is established
through the aggregation of results from the the three matchers. Tools that apply MISD include
XMAP++ [24], MaasMatch [92], OMReasoner [97], InsMT [65], XMapGen [23], and XMapSig [23].
All these tools implement this model of parallellization at the entity matching level of the ontology
matching process. MISD only reduces time complexity and not space complexity.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:15

Multiple Instruction Multiple Data (MIMD). This is an implementation of parallelism where each
PU is executing a different instruction on a different independent dataset [8]. In ontology matching,
this model has been implemented at the entity matching stage of the ontology matching process.
The implementation is achieved by first partitioning the input ontologies into different indepen-
dent clusters. The clusters can then be processed at different PUs by different matchers. SPHeRe
[5] implements MIMD inform of data parallelism [6] at the entity matching level of the ontol-
ogy matching process. SPHeRe forms independent clusters of entities of the source and the target
ontologies based on type of the available matchers. For instance, if there are only two types of
matchers, i.e., string-based matcher and structure-based matcher, both the source and target on-
tologies will be serialized into two subsets, i.e., both the source and the target ontologies will have
one subset containing an ontology’s entities and the entities’ respective names for purposes of
string-based matcher while the other subset will contain an ontology’s entities and structural in-
formation that exist between entities in the ontology, this is to be exploited by structural matcher.
A pair of entities from the source and target ontologies within the same pair of serialized subset
constitute a matching job to be processed by a matching task (a single independent execution of a
matching algorithm over a resource from source and target ontologies). The matching task is repli-
cated such that the total number of matching tasks MTtotal is equal or greater than the Cartesian
product of the number of entities in source and target ontologies, i.e., Mtotal ≥ m × n withm and n
being the number of entities in source and target ontologies, respectively. The matching tasks are
distributed evenly over the available computing cores and are the basis for achieving parallelism
in SPHeRe. The matching jobs are distributed among the relevant matching tasks to be processed
in parallel.

2.2.2 Matcher Implementation. In ontology matching, it is generally an accepted principle that
multiple features of an ontology must be exploited for a tool to generate quality mappings. Conse-
quently, most tools are combining multiple matchers with each matcher exploiting a given feature
of the ontology to compute similarity between entities of two ontologies. The multiple match-
ers can be composed in parallel, sequential or hybrid fashion [86]. Consider a case where each
input ontology has n entities and each pairwise similarity computation between the entities of
source and target ontologies takes a time t, then the total time complexity needed to match the
two ontologies is O(n2 × t). If an ontology matching tool integrates n matchers and executes all the
matchers in a sequential manner with the subsequent matcher refining the results of the previous
matcher, then the total time complexity needed to complete the matching process is n(n2 × t) (as-
suming all matchers have equal complexity). This kind of implementation is not scalable to large
ontology matching tasks. Based on this realization, some ontology matching tools are executing
their matchers in parallel with a goal of reducing the execution time. According to Reference [40],
parallel matcher composition can be implemented in two ways:

(1) Inter-matcher parallelization,
(2) Intra-matcher parallelization.

Inter-matcher Parallelization. In this implementation of parallelization, multiple independent
matchers are executed in parallel to match entities of input ontologies by utilizing multiple avail-
able processors [40]. Each matcher generates a similarity matrix, which is then aggregated with
similarity matrices from other matchers resulting in a single final similarity matrix. The final
alignment between the input ontologies is established from the final similarity matrix through
the application of different selection approaches [70]. Consider the earlier example of matching
two ontologies where each ontology has n entities. If the n matchers of an ontology matching
tool are executed in parallel in an inter-matcher fashion, then the time complexity is O (n2 × t),

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:16 P. Ochieng and S. Kyanda

this therefore means that parallel execution of matchers using inter-matcher parallelization scales
down the execution time by a factor of n as compared to the sequential execution. If the match-
ers are of different time complexities, the slowest matcher determines the overall execution time.
Inter-matcher parallelization, however, does not address the challenge of high space complexity
that exists during the matching of large ontologies. This technique therefore is not appropriate
if space complexity reduction is desired, otherwise it has to be augmented by a space complexity
reduction technique. Examples of tools that use this parallelization technique include MaasMatch
[92], XMap++ [24], and CroMatcher [42].

Intra-matcher Parallelization. In this type of parallelization, apart from executing the multiple
matchers in parallel, an individual matcher is also decomposed into several matching tasks it is
composed of, then the tasks are executed in parallel within a matcher [40]. Intra-matcher paral-
lelization therefore involves two level of results aggregation. First at the intra-matcher level and
at inter-matcher level. This technique has been implemented by Reference [41].

2.3 Multiple Matcher Combination

A major challenge of executing matchers in parallel is how to combine the results of the multiple
matchers into a final single similarity matrix. The choice of a combination technique can affect:

(1) The quality of the final alignment [85].
(2) The overall execution time of a matching tool.

Some of the techniques that exist in literature for aggregating mapping results from different
matchers are defined below. Given the source and the target ontologies Os and Ot , respectively,
let ei ∈ Os and ej ∈ Ot . If a tool executes n matchers in parallel, i.e., {M1,M1, . . . ,Mn } and each
matcher generates a similarity value Si 1 ≤ i ≤ n between ei and ej , then the weighted sum aggre-
gationWs is defined according to Equation (5):

Ws =

i=n∑

i=1

WiSi , (5)

whereWi is the weight assigned to similarity value from matcher Mi .
The average weighted aggregation Aw is defined according to Equation (6):

Aw =

∑i=n
i=1 WiSi

n
. (6)

The average sum aggregation As is defined according to Equation (7):

As =

∑i=n
i=1 Si

n
. (7)

The average sum aggregation assumes similar weights for all matchers. The MAX aggregation
Max is defined as Si such that there is no other S j > Si while MIN aggregation Min is defined as
Si such that there is no other S j < Si .

2.3.1 Comparing Tools Using Parallel Matching. In this section, we compared ontology match-
ing tools that use parallelization to achieve scalability. We specifically evaluated the tools on the
following parameters:

(1) At which stage of the ontology matching process does the tool apply parallelism?
(2) Does the tool achieve scalability?
(3) Which aggregation technique(s) does the tool use to combine the multiple similarity

matrices?

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:17

Table 4. Comparing Tools That Employ Parallelization During Ontology Matching Process

Tool
Stage of parallization in

the ontology process
Parallelization

technique

Additional
scalability

Technique?

Aggregation
method Scalable?

OMReasoner Entity matching stage
Inter-matcher/

MISD
No

weighted
summarizing

algorithm
No

XMap++ Entity matching stage
Inter-matcher/

MISD No
Weighted average

using neural network Yes

MaasMatch Entity matching stage
Inter-matcher/

MISD No
Dempster-Shafer

theory No

GOMMA entity matching stage Intra-matcher Yes (Blocking) Union and average Yes

XMapGen Entity matching stage
Inter-matcher/

MISD No Machine learning No

XMapSig Entity matching stage
Inter-matcher/

MISD No Machine learning No

SPHeRe
Loading and Entity

matching stage SIMD and MIMD
Yes

(Partitioning) Union Yes

CroMatcher Entity matching stage
Inter-matcher/

MISD No Weighted sum No

InsMT+ Instance matching stage
Inter-matcher/

MISD No average aggregation No

ServOMBI Pre-processing stage SIMD Yes (Indexing) Not needed Yes

(4) Which type of parallelization does the tool use?
(5) Does the tool use additional scalability technique?

The summary is presented in Table 4. Out of the 10 tools presented in Table 4, the most popular
models of parallelization that they employ is inter-matcher and MISD model of parallelization.
Seven of the tools use these models at the entity matching stage of the ontology matching pro-
cess. Only XMAP++ among the seven tools that use inter-matcher and MISD is scalable. This
may be attributed to the fact that these techniques of parallelization do not address the challenge
of high space complexity associated with matching large ontologies. Except for ServOMBI where
parallelization has been exclusively implemented at the pre-processing stage, all other tools at least
implement parallelization at the entity matching stage of the ontology matching process. There-
fore, the entity matching stage of the ontology matching process is currently the most popular
stage of implementing parallelism among the ontology matching tools. SPHeRe is currently the
only tool that implements parallelism at the different stages (loading and entity matching stage)
of the ontology matching process.

2.3.2 Tools That Implement Parallelization. CroMatcher [42] [43] is an ontology matching tool
based on two set of matchers, i.e., the terminological and structural matchers. It first executes
terminological matchers in parallel, then the structural matchers in sequential fashion. The results
from all the terminological matchers are aggregated using weighted aggregation. The resultant
output from the aggregation act as the input of structural matchers.

OMReasoner [97] employs multiple matchers that are executed in parallel. The matchers use Edit
Distance and WordNet to compute similarities between entities of the input ontologies. Each cor-
respondence generated by a matcher has a respective confidence value. The normalized results of
each matcher are then combined using weighted summarizing algorithm to obtain final alignment.

InSMT [65] is an ontology matching system dedicated to matching instances automatically. It ex-
ecutes multiple string-based matchers in parallel to establish similarities between entities of input

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:18 P. Ochieng and S. Kyanda

ontologies. It uses local filter to refine the similarity matrix of each matcher. The final alignment
is obtained by average aggregation of all similarity matrices generated by the matchers.

XMap++ [24] employs three key matchers, i.e., string, linguistic, and structural-based matcher,
which are executed in parallel. The three similarity matrices are combined into a single similarity
metric using weights that are assigned using neural networks as proposed in Reference [109].

MaasMatch [92] utilizes the information located in the concept names, labels, and descriptions
to produce a mapping of ontologies’ similarities. Computations are executed in parallel using a
dynamic number of threads, depending on the hardware. This facilitates the computation of align-
ments of ontologies through a more effective usage of all available computing power. The different
similarity values are combined using Dempster-Shafer theory.

GOMMA [41] employs multiple parallel matchers on multiple computing nodes and CPU cores.
It performs fragment level match tasks in parallel. This kind of parallelization is possible since
for all used matchers all information used for matching is directly associated to the concepts. It
uses union and average weighting to combine the different similarity values from the multiple
matchers.

XMapGen [23] is a variation of XMAP++. It uses three matchers which are executed in parallel.
Like XMAP++ the matchers include string matcher, linguistic matcher and structural. It then uses
aggregation, selection, and combination to select final alignment.

SPHeRe [5], [4], [63] is an ontology matching tool that creates subset of input ontologies, then
executes the different matching processes of the subsets of the input ontologies on multicore that
are distributed in different computational nodes for parallel execution of the matching process.

3 IMPROVING QUALITY OF MAPPINGS IN LARGE ONTOLOGY MATCHING

Due to the complexity of the matching process of large ontologies, an ontology matching tool is
likely to generate a significant number of wrong mappings between the entities of two input on-
tologies, hence degrading the quality of final alignment generated by the tool. The main focus in
this section is to answer question: How do ontology matching tools tackle the problem of decreas-
ing quality of mappings when matching large ontologies? Since quality techniques integrated on a
tool degrade its scalability, we also investigated how tools add scalability attributes in the quality
maintenance techniques. The review in this section is mainly focused on two key techniques:

(1) Interactive mapping repair.
(2) Automatic repair.

3.1 Pay As You Go Ontology Matching Technique

As ontologies become huge, automatic matchers become an inevitable solution for mapping the
concepts of the source and the target ontologies. However, the quality of mappings produced by
automatic matchers drop with an increase of the sizes of the ontologies being matched [25]. To
address the challenge of degraded efficiency, some tools such as LogMap [55] and ALCOMO [69]
have repairing capabilities to automatically repair inconsistent mappings. However, a fully auto-
matic matching process places an upper limit on quality of alignment that a tool can be produce
[81], therefore, to scale this quality barrier, human intervention is vital. One key strategy that
ontology matching tools are implementing to scale the quality barrier and improve the quality
of mappings is the pay as you go technique, which is a technique where the initial matching is
performed automatically and the results improved incrementally by expert users of the domain
of the two ontologies being matched [78]. Automatic matchers, therefore, can be viewed as pro-
viding partial or untrusted mappings, which users can be engaged to improve. Users improve the
mappings by iteratively evaluating them through annotations. For example, a mappingm selected

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:19

for user evaluation can be annotated as “correct” or “wrong” depending on a user’s judgment.
If the mapping m is annotated as wrong, it is removed from the final alignment, otherwise it is
maintained in the final alignment. The pay as you go technique is implemented as summarized in
Algorithm 1.

ALGORITHM 1: Summary of the pay as you go technique

1: INPUT Source ontology(Os), target ontologies(Ot) and automatic matching tool M.
2: OUPUT Quality alignment A.
3: Generate initial alignment AI between Os and Ot using automatic mapping tool M.
4: Select a set of mappings L from AI that are considered low quality.
5: User or users query the set of low quality mappings L for validation.
6: Improve the quality of AI based on the users’ feedback.
7: Iterate the process from step 4 until mappings quality of AI attains the highest possible quality (i.e.,

highest possible precision and recall).
8: output the final alignment A.

The general issues in the pay as you go technique are:

(1) How is an expert user selected to participate in mapping evaluation?
(2) What are the design features that should be included in the user interface?
(3) How do tools select candidate mappings for validation?
(4) How do tools accept feedback from the user(s)?
(5) In case many users are involved in the validation process, how is consensus reached?
(6) How is a user’s feedback utilized?
(7) How does a system deal with user fatigue?

The first two issues are discussed in References [28] and [49]. Our review is mainly focused on the
last five issues by extending the discussion in Reference [28].

3.1.1 Selecting Candidate Mappings for Validation. Manual curation of mappings such as pay
as you go technique are time-consuming, especially if the input ontologies are large since they
generate a large number of candidate mappings [58]. To make the process of user validation
feasible, i.e., appealing to the user(s) and scalable, not all mappings generated by automatic
matcher(s) can be queried by the user for evaluation since this is tedious and will slow down the
matching process. Therefore, ontology matching tools performing interactive matching should
implement techniques of selecting the best minimum sample mappings which, when evaluated
by dedicated user(s), the user’s feedback will yield the final quality mappings within a short time
(i.e., few iterations). It is, therefore, crucial to select the minimum most informative candidate
mappings that after users’ feedback, the feedback will maximize the improvement of the previous
iteration’s matching performance. Work in Reference [98] proposes the use of an erroneous map-
ping as the most informative mapping since its correction and the propagation of the correction in
the similarity matrix guarantees further improvement of the previous mapping results. An erro-
neous mapping in this context is defined as a mapping between two entities from the source and
the target ontologies where an automatic matcher establishes a certain relationship, e.g., equiv-
alence but according to some defined (possibly unknown) reference alignment, it is wrong. The
problem of selecting candidate mapping for evaluation can be defined as:

Given an initial mapping set M , generated by automatic matcher(s), find a minimum set of
mapping Mu ⊆ M such that for each iteration M \Mu → M f , where M f is the final alignment.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:20 P. Ochieng and S. Kyanda

This definition assumes that all mappings in the set Mu are validated as wrong mappings. Three
key techniques currently exist in literature for candidate mapping selection for user validation:

(1) Similarity matrix-based techniques.
(2) Probabilistic-based techniques.
(3) Ontology structure-based techniques.

Similarity MatrixBased Techniques. These techniques have been used in tools that produce 1:1
mappings.

Selection Based on Individual Matcher Disagreement. Most matching tools integrate multiple
matchers to perform the matching task. The key matchers being used include structural matcher,
which exploits the relationship that exists between entities of an ontology; lexical matcher, which
matches entities based on the textual labels of the entities together with their annotations; and se-
mantic matcher, which exploits background knowledge to establish semantic similarities between
entities of two ontologies [30]. During the matching process, each matcher generates a similar-
ity matrix S = (si j)i=1, ..n, j=1, ..m with each (si j) being the confidence value that shows how close
entity ei and ej of the source and the target ontologies are related. To pick low-quality mapping,
disagreement in the results of a given matcher can be a signal that one of the mappings involved
is wrong.

Definition 2 (Disagreement Mappings of a Matcher in 1:1 Mapping). Given a source and a target
ontologyOS andOT , respectively, a matcher M and entities ei ∈ OS and ej , e

′′
j ∈ OT where ej � e ′′j ,

If the matcher M generates a similarity matrix S such that s (ei , ej , r1,k) and s (ei , e
′′
j , r2,w) then

there is a disagreement if

(1) r1 = r2 where ri can be ≡,� or �,
(2) k and w ranging [0,1] are greater than set selection threshold T, and
(3) |k −w | ≤ ϵ , i.e., the difference between the similarity values of the two mappings is very

small. The mappings participating in the disagreement are all flagged and become candi-
dates for user evaluation. This technique is implemented in References [13], [17], and [98]
with some variations.

Selection Based on Multiple Matcher Disagreement. This occurs when two or more matchers gener-
ate conflicting mappings.

Definition 3 (Disagreement Mappings of Multiple Matchers in 1:1 Mapping). If the matchers M1

and M1 are executed in parallel to match entities of source and target ontologies OS and OT , then
there is disagreement between the matchers if:

(1) MatcherM1 establishes the mappingM1(ei , ej , r1) and matcherM2 establishes the mapping
M2(ei , e

′′
j , r2) where r1 = r2 with the entities ei ∈ OS and ej , e

′′
j ∈ OS and ej � e ′′j , then the

two marchers are conflicting with regard to the mappings.
(2) Matcher M1 establishes the mapping M1(ei , ej , r1)and matcher M2 establishes the mapping

M2(ei , ej , r2), where r1 � r2 with the entities ei ∈ OS and ej ∈ OS then the two matchers
are conflicting with regard to the mappings.

(3) Matcher M1 establishes the mapping M1(ei , ej , r1) and matcher M2 rejects the mappings.
This may result, for example, if two entities are lexically similar but their neighbors are
different, hence lexical and structural matchers disagree.

The mappings that generate disagreements become candidates for user evaluation. The variations
of this definition is implemented in References [13] and [98]. The similarity matrix-based

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:21

techniques have the advantage that they pay more attention to selecting wrong informative
mappings, which is desirable for interactive mapping [98]; however, since matchers investigate
different properties of entities in an ontology, disagreement among them can be many, especially
in a large ontology matching task; therefore, these techniques may generate many candidate
mappings for evaluation which may overwhelm the user.

Probabilistic-Based Techniques. These techniques apply statistical methods to pick candidate
mappings for evaluation. After establishing an initial alignment using automatic matching tool,
statistical methods are then applied to the alignment to pick sample mappings that user feedback
will be sought. This is applied in Reference [78] where they apply simple random sampling as
proposed in Reference [18] to pick candidate mappings for user evaluation. A clear disadvantage
of these techniques is that they do not pay attention to selecting wrong mappings (informative
mappings), and therefore may result in users not providing a significant improvement to the qual-
ity of mappings. However, they have the advantage that the sample size of the selected mappings
for user evaluation can be controlled to fit the user’s needs.

We motivate this part of discussion by giving an example of how simple random sampling can
be used to determine the size of the candidate mappings for user evaluation. If a matcher generates
an initial alignment containing 4,203 mappings, using simple random sampling with a confidence
of 95% and a confidence value of 5%, the required sample size is computed by first computing the
sample size for infinite population (SSI) as shown in Equation (8), then the sample size for finite
population (SSF) as shown in Equation (9):

SSI =
Z 2 × p × (1 − p)

c2
, (8)

where Z = Z value (e.g., 1.96 for 95% confidence level), p = percentage of picking a mapping (0.5)
and c = confidence level (0.05).

SSF =
SSI

1 + SSI−1
Population

, (9)

SSI =
1.962 × 0.5 × 0.5

0.052
= 384.16,

SSF =
384.16

1 + 384.16−1
4203

= 352.

Therefore, for an initial alignment of size 4,203, using the parameters above a sample mapping set
of 352 mappings should be selected for user evaluation.

Ontology Structure-Based Techniques. These techniques exploit the relationships that exists in
the ontologies being matched to flag low-quality mappings. It is majorly based on the discussion
first introduced by Reference [70]. The techniques are anchored on the condition that the mappings
generated by automatic matching tools should respect (i) consistency principle, i.e., they should
not lead to unsatisfiable concepts in the merge, (ii) conservativity principle, i.e., they should not
introduce new semantic relationships between concepts from one of the input ontologies, and
(iii) locality principle, the mappings should link entities that have similar neighborhoods [53] [56].

Definition 4 (Merged Ontology). Given an alignment A between two ontologies O1 and O2, the
merged ontology OM

O1,O2
is defined as O1 ∪O2 ∪A.

Unstable Mappings. The notion of stability first introduced by Reference [70] asserts that map-
ping between two ontologies should not introduce new structural relationship that were not orig-
inally modeled in the two ontologies.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:22 P. Ochieng and S. Kyanda

Definition 5 (Unstable Alignment). An alignment A between ontology O1 and O2 is regarded
as unstable if there exists a pair of concepts B,C ∈ Oi with i ∈ {1, 2} such that Oi � |= B � C and
OM

O1,O2
|= B � C .

If a correspondence introduces a new subsumption relationship between the concepts of a given
ontology in the merged ontology that did not exist in the original ontology, the correspondence
is flagged as unstable (unreliable) mapping. The correspondences that introduce instability in the
merged ontology should be displayed to the user for evaluation. Examples of mappings that should
be flagged based on instability include:

(1) If O1 |= X � X ′, and O2 |= ¬(Y � Y ′), and any of the following mapping combination
〈X ,Y ,≡〉 ∩ 〈X ′,Y ′,≡〉 and 〈X ,Y ′,≡〉 ∩ 〈X ′,Y ,≡〉 exists in the final alignment, then flag
the mappings as unstable.

(2) If O1 |= ∃R1.� � X , and O2 |= ¬(∃R2.� � Y), and the mapping combination 〈R1,R2,≡〉 ∩
〈X ,Y ,≡〉 exist in the final alignment, flag the mappings as unstable.

Incoherent Mappings. Incoherence arises if the merged ontology has contradicting axioms.

Definition 6 (Incoherent Alignment). An alignment A between ontology O1 and O2 is regarded
as incoherent if there exists a concept C ∈ Oi with i ∈ {1, 2} such that Oi � |= C � ⊥ and OM

O1,O2
|=

C � ⊥.

This problem can arise either due to incompatibility between ontologiesO1 andO2 or as a result
of wrong mappings. Therefore, mappings that result in consistency violations become candidates
for user evaluation. Some example mappings that are flagged as incoherent include:

(1) If O1 |= X � X ′ � ⊥, and O2 |= Y � Y ′, and any of the mapping combinations 〈X ,Y ,≡〉 ∩
〈X ′,Y ′,≡〉 and 〈X ,Y ′,≡〉 ∩ 〈X ′,Y ,≡〉 exists in the final alignment, flag the mappings as
incoherent.

(2) If O1 |= ∃R1.� � X , and O2 |= ∃R2.� � ¬Y , and the mapping combination M (R1,R2,≡) ∩
M (X ,Y ,≡) exist in the final alignment, flag the mappings as incoherent.

These techniques have the disadvantages that:

(1) They require extensive reasoning for violations to be detected. This impacts negatively
on the scalabilty of a tool. Tools such as AML [89] and LogMap [59] employ ontology
modularization to speed up violation detection.

(2) A significant amount of violations are contributed by the incompatibility of the input
ontologies, therefore flagging mappings based on these violations may result in flagging
a significant number of mappings that are inconsistent but are not wrong mapping, hence
displaying them to the user for evaluation will not yield maximum benefits of interactive
mappings.

3.1.2 User Feedback. To get user feedback, systems implement two key dimensions

(1) Single user vs multiple users
(2) Controlled annotation vs uncontrolled annotation.

Controlled Annotation vs Uncontrolled Annotation. In pay as you go, user(s) provide feedback in the
form of annotations. They annotate mappings based on the technique being applied by a system
to verify correctness of a mapping. Formally, feedback can be viewed as a tuple 〈M,a,u, t〉 with
M specifying the mapping, a the annotation provided by the user u, and t indicates the type of
feedback [9]. Depending on the system, the set of annotations provided by the user can either be
controlled or uncontrolled.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:23

Controlled Model. In this setup, a user is allowed only to choose annotations from a fixed set
of options such as evaluating if a mapping is correct or incorrect. Compared to the uncontrolled
scheme, this model is relatively fast since a user has no extra cognitive burden of coming up with
his or her own tags, a process which may take some time. This scheme is implemented in Refer-
ences [13], [17], [29], [59], [89], and [98].

Uncontrolled Model. Here, users provide the annotations in free form nature. Despite being
slower, it is supported by work in Reference [12], who found out that users prefer tagging of con-
cepts to assign them their own meaning rather than being restricted to narrow range of mapping
terminology such as to answer questions like “corresponds to” and “similar to.”

Single User vs Multiple Users: Multiple User Evaluation. This is where more than one user provides
feedback. With multiple users, conflicts in annotations of a given mapping are likely to arise. A
conflicting feedback is a feedback where a mapping M is assigned two or more annotations with
conflicting meaning [9]. Tools that employ this scheme have an extra task of establishing consensus
among the conflicting users in a given mapping. Such tools, therefore, should integrate mechanism
of addressing conflicts, a solution which may impact negatively on its scalability. This scheme is
implemented in Reference [13], where they use simple majority vote to come to the final evaluation
of a mapping from different answers provided by different users. Reference [90] uses an alignment
API to assess mappings provided by the crowd.

Single User Evaluation. This is where only a single user is allowed to validate a mapping. This
has the advantage that it avoids dealing with diverse and sometimes disagreeing answers that are
common when multiple users are engaged, hence relatively faster. However, it faces downsize that,
in case a user makes an error in evaluation, his or her evaluation is adopted as right since there
are no other users to dispute. Some research such as Reference [78] evaluates the reliability of a
single user using Intra Observer Reliability (IaOR) as proposed in Reference [47]. The single user
technique is applied in References [14], [17], [29], [59], [89], and [98].

3.1.3 Improving Mappings Using User Feedback. In pay as you go technique, user feedback is
used to improve the mappings generated by the automatic mapping tool. The existing techniques
in literature utilize user feedback by either updating the similarity matrix or directly correcting
the mappings. In Reference [98], once users confirm a mapping to be either correct or wrong, they
use similarity flooding proposed in Reference [72] to correct other related mapping, therefore
maximizing the effect of user’s feedback. In Reference [13], they update similarity matrix based
on the users’ responses, then execute the automatic selector algorithm to select a new improved
alignment from the adjusted similarity matrix. In Reference [59], they directly remove mapping
rejected by users from the final set of mappings.

3.1.4 User Fatigue. To address the problem of user fatigue, tools implement different strategies,
which include:

(1) Allowing users to terminate the process of validation at any time [57], [58], [59].
(2) Placing an upper bound on the number of validation requests that a user can handle [33],

[89].
(3) Asking a user to validate a given mapping only once [33], [89], [100].

3.1.5 Tools Evaluation. In this section, we compare tools that participated in the OAEI 2015
and 2016 conference in the interactive track against the parameters discussed in this section. We
specifically compare the tools by answering the following questions for each tool.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:24 P. Ochieng and S. Kyanda

Table 5. Comparing Tools Performing Interactive Matching

Tool
Mapping
selection

Number
of users

Type of user
feedback

Correction
Technique

Technique to
handle fatigue

Scalability
Technique

LogMap
Structural
heuristics Single Controlled

Directly remove
mappings

user initiated
stop

modular
reasoning

AML

Structure and
Similarity matrix
(confidence value)

Single Controlled
Directly remove

mappings
upper bound

limit
reasoning over
a partitioning

XMAP Threshold filter Single Controlled
Directly remove

mappings Not included Not included

ALIN Not included Single Controlled
Directly remove

mappings Not included Not included

ServOMBI Threshold filter Single Controlled
Directly remove

mappings Not included Not included

JarviSOM
Disagreement of

classifiers Single Controlled
Directly remove

mappings Not included Not included

Table 6. Comparing Tools Performing Interactive Matching

Tool

Size of
initial

mappings
Total

request
Correct
requests

Wrong
request

non
Interactive
precision

Interactive
precision

Non
Interactive

recall
Interactive

recall
F-measure

increase

ALIN 1142.8 803 626 594 0.984 0.993 0.335 0.749 0.3541

AML 1484 241 51 189 0.95 0.965 0.936 0.948 0.0268

LogMap 1306 590 287 303 0.911 0.982 0.846 0.846 0.0316

XMAP 1486 35 5 30 0.928 0.929 0.865 0.867 0.0015

(1) Which candidate mapping selection technique does it apply?
(2) It is single- or multiple-user based?
(3) Is the feedback controlled or uncontrolled?
(4) How does it utilize the users’ feedback?
(5) How does it deal with user fatigue?
(6) Does the tool include any scalability technique in candidate mapping selection?

Table 5 gives a comparison of the tools based on the questions listed above.
We further evaluated the tools using OAEI 2016 data on interactive track on the following

questions:

(1) Does interactive process result in improvement of precision and recall of a tool?
(2) What percentage of initial mappings does a tool select for evaluation?
(3) How accurate is a tool in selecting wrong mappings?

We evaluated the tools using data where the user provides perfect feedback, i.e., has 0% error rate.
Table 6 provides data on different parameters measured.

From Table 6, it is clear that tools that present more wrong requests (i.e., correct mappings that
do not need user evaluation) to the user benefit the least from the user’s feedback—the biggest
culprit tool being XMAP, which, out of 35 mappings, it presents to the user only 14.28% correct
requests (wrong mappings). AML presents the second-lowest correct request, i.e., 21.26%, hence
the second-least beneficiary from the user’s feedback. Therefore, there is a direct link between
type of mappings presented to the user and the magnitude of improvement in the quality of map-
pings. Linking Tables 5 and 6, we observe that XMAP presents the lowest request to the user for
evaluation only 2.26% of the total initial correspondences. This is expected since it relies on “high

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:25

threshold” to select mappings for evaluation, this high threshold restrict the number mappings
selected. Despite this being desirable from a user’s perspective, XMAP records the lowest benefit
(F-measure increase) from user’s involvement. LogMap and AML, which use structural incoher-
ence to generate mappings for evaluation, still have a high number of wrong requests. Out of the
total requests to the user, LogMap presents 51.35% wrong requests while AML presents 78.42%.
This may be a signal that a significant amount of the structural incoherence flagged is due to
incompatibility between input ontologies as opposed to wrong mappings. ALIN makes the most
requests to the user and benefits the most from the interactive matching process; this may be at-
tributed to the fact that it is specifically a tool for interactive matching, hence it may not be strict
on how it computes initial mappings. It also presents more than one distinct mapping per user re-
quest. From the results in Table 6, there is still a lack of a clear standout method for wrong mapping
selection and this may still be an active area of research.

3.1.6 Interactive Matching Tools. We finally conclude this section by giving a review of some
of the active tools that implement interactive matching.

LogMap2 [57], [58], [59]. After establishing initial mappings M by exploiting inverted lexical in-
dexes of concepts and labels, it uses a combination of both semantic indexes and lexical indexes to
prune non reliable mappings from M. Mappings Mu in M, which are still not “clear cut” after dis-
carding non-reliable mappings, are the candidate mappings for user verification. LogMap2 creates
a partial order of mappings in the set Mu using their similarity value. Users are then asked ques-
tions to either approve or reject the mappings according to the order created. Since LogMap imple-
ments a single user model, it anticipates user fatigue by allowing the user to terminate the process
at any time. Mappings that are still unresolved after user termination are solved automatically.

XMAP [29] uses a number of terminological matchers and structural matchers to generate ini-
tial candidate mapping set M. It then applies two thresholds to filter the set M into two, first is
the set M l which contains final mappings and the second set Mu , which contains mappings for
user evaluation. The threshold for user evaluation is set to be high to minimize the number of
mappings in the set Mu . The mappings in Mu accepted by the user are moved to the set M l . How-
ever, XMAP does not register any significant benefit from the user involvement as compared to
the non-interactive mode.

AML [89] exploits incoherence techniques between the merged ontology and the input ontolo-
gies to flag mappings that are likely to be low quality. For a large ontology matching task, it em-
ploys a partitioned-based approach to avoid reasoning over the large ontologies, hence it is able to
flag low-quality mapping by reasoning over a partition [89], therefore achieving scalability. The
low-quality mappings are then displayed to the user for validation. AML also does not ask a similar
question twice to the user by keeping track of already asked questions. It also uses a query limit to
handle user fatigue. It directly removes the validated mapping from the low quality mapping set.

ALIN [100] uses linguistic metrics to compute similarities of the entities of the input ontologies.
It then applies stable marriage algorithm with incomplete preference list [48] to pick an initial set
of candidate mappings. The candidate mappings are further trimmed using WordNet, i.e., corre-
spondences whose entities are not in the same synset of WordNet are removed. The remaining
correspondences are sorted according to the sum of similarity metric values with the greatest sum
being the first in the list. The correspondences are then displayed to the user in the order of the
list for evaluation. To reduce the number of correspondences, only class entities are allowed in the
initial set of correspondences. After a user’s feedback, wrong correspondences are removed from
the correspondence set and correct correspondences are removed from the set to be added to the
final alignment. Due to the list of candidate mapping created, ALIN does not ask the user to verify
a mapping more than once.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:26 P. Ochieng and S. Kyanda

ServOMBI [64] employs terminological-based inverted index to compute initial mappings set M
of input ontologies. It then employs users in a two stage process to help in refining the mapping
M into the final mapping M f . In the first stage, the mappings in M are presented to the user for
validation, then machine learning techniques are used to refine the mappings M based on the user’s
feedback. The user is again involved to refine the modified mapping set M into the final set M f .

JarviSOM 1 employs a number of classifiers to determine the mapping set Mu to be verified by
the user. The set Mu contains the mappings where the classifiers disagree the most. After user
validation, the classifiers are used to generate the final alignment M f .

3.2 Automatic Mapping Repair

Automatic ontology matching tools generate mappings that are composed of a set of correct and
wrong mappings when compared to a reference alignment of the two ontologies [71]. To flag
potentially wrong mappings automatically, ontology matching tools are designing techniques that
reason over the mappings generated and input ontologies to identify the set of mappings that are
wrong and diagnose them. The key issues in automatic mapping repair include:

(1) How to identify wrong mappings.
(2) How to diagnose the inconsistent alignment.
(3) How to incorporate scalability in mapping repair process.

3.2.1 Identifying Wrong Mappings. To identify potentially wrong mapping, Reference [71] in-
troduces the concept of consistency as a means of identifying wrong mappings. Inconsistency is
evaluated according to Definition 6. Therefore, the problem of identifying wrong mappings in-
volves identifying a set of mappings that introduce consistency violations in the input ontologies
when compared to the ontology generated by merging the input ontologies via the mappings es-
tablished between them. Tools with repair functionality, therefore, integrate reasoning techniques
that are able to detect these mappings automatically. As demonstrated in Reference [71], not all
mappings that are flagged as causing inconsistency in the mappings should participate in the given
matching repair; they propose the use of a minimal inconsistent set to repair the mappings into
consistency in a process known as diagnosis.

Definition 7 (Minimal Inconsistent Set). Let M be a set of mappings between input ontologiesO1

andO2. A setC ⊆ M is inconsistent set for a concept A ∈ Oi with i ∈ (1, 2) iffOM
O1,O2

|= A � ⊥ and
Oi � |= A � ⊥. C is a minimal inconsistent set for A ∈ Oi iff C is an inconsistent set for A ∈ Oi and
there is no C ′ ⊂ C that is also an inconsistent set for A ∈ Oi .

Therefore, the task for repair changes to only identifying the minimal inconsistent set that will
repair the inconsistent alignment. Two key strategies exist for identifying minimal inconsistent
set:

(1) Local reasoning strategy.
(2) Global reasoning strategy.

Local Reasoning Process. A local reasoning is where the minimal inconsistent set is determined
by considering a justification for a particular entailment.

Definition 8 (Justification). Let O |= α , a fragment O ′ ⊆ O is a justification JUST (α ,O) for α in
O if O ′ |= α and there is no other O ′′ such that O ′′ |= α for every O ′′ ∈ O [62]

With local repair reasoning strategy, reasoning over the whole input ontologies is avoided,
hence making the process scalable. LogMap2 [59] detects unsatisfiable mappings by performing

1http://oaei.ontologymatching.org/2015/results/interactive/index.html.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

http://oaei.ontologymatching.org/2015/results/interactive/index.html

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:27

modularization of input ontologies. Given the input ontologies O1 and O2 and initial mapping M
between them, LogMap2 computes fragmentsO ′1 ⊆ O1 andO ′2 ⊆ O2. These fragments should con-
tain all the information in the input ontologies relevant to given concepts to detect unsatisfiability
of mappings between the concepts. AML [89] also employs modularization technique by defining
a set of conditions that a module must meet to fully represent the information in the input ontolo-
gies sufficient to detect incoherence violations of a mapping. Some research such as References
[44], [62], and [105] explore means of extracting justification. Despite being scalable, local reason-
ing process is incomplete, i.e., may be scalable but not does not guarantee that all members of the
minimal inconsistent set will be flagged.

Global Reasoning Process. A global reasoning determines the minimum inconsistent set by con-
sidering all the classes and relationships modeled in the input ontologies. Despite producing better
results that local reasoning process, it is not scalable for large ontologies. ALCOMO [60] [69] can
be configured to perform complete repair process.

3.2.2 Mapping Repair.

Definition 9 (Mapping Repair). Let M be a set of inconsistent mappings between input ontologies
OS and OT , a set of mappings R ⊆ M is a mapping repair for M if M \ R is consistent. Ontology
matching tools therefore perform repair by removing mappings that introduce inconsistencies in
the alignment.

Aggression Problem. Automatic repair techniques have been criticized as being too aggressive
since they remove many correct mappings [84]. To mitigate aggression problems, LogMap splits an
equivalence mapping flagged as inconsistent into two subsumption mappings and keeps the one
that does not violate any logical constraints. For instance, if there exist an equivalence relation
M(A ≡ B) that is inconsistent, it breaks it into M(A � B) and M(B � A) and removes the one that
is inconsistent in the merged ontology. This, however, can create a relationship that is consistent
but does not represent a real relationship entailed between the input ontologies. AML tackles
aggression problems by partitioning the initial detected conflicting sets into disjoint clusters, i.e.,
it divides the initial set of conflicting mappings into sets that have at least one mapping in common.
By doing this, AML is able to determine the minimal mappings to be removed from each of these
clusters independently. ALCOMO has no mitigation for aggression problems.

3.2.3 Mapping Repair Tools. ALCOMO [60] [69] is a tool that was specifically developed to re-
pair inconsistent mappings. It implements a two-tier optional reasoning to flag mapping repair. The
first is an incomplete reasoning that uses OWL2 reasoner to detect mappings that lead to incon-
sistencies by exploiting disjoint axioms in the input ontologies. The second reasoning is complete
and can either be used to refine the results of the incomplete reasoning or can flag mappings by
reasoning over the entire input ontologies.

AML [89]. It first partitions the input ontologies into fragments by the use of four key condi-
tions that are based on disjoint axiom and superclass-subclass relationships modeled in the input
ontologies. The conditions guarantee that reasoning over fragments will flag incoherent mappings
the same way the non-partitioned ontology would. The partitioning is to ensure scalability, which
is key for repairing mappings in large ontology mapping.

LogMap [55] converts the axioms in the input ontologies into propositional theories and applies
horn rules to detect unsatisfiable clauses. To enable scalability, it employs local repair, which is
performed by establishing the minimal effect in small subset of matched ontology. The complete
process is described in Reference [60].

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:28 P. Ochieng and S. Kyanda

3.2.4 Criticism of Automatic Mapping Repair. Based on the discussion in Reference [84], the
existing automatic mapping repair techniques face the following criticisms, which still need to be
addressed:

(1) Since they put emphasis on coherence, they sometimes generate mappings that are coher-
ent but are wrong.

(2) They remove large number of correct mappings to achieve coherence.
(3) Different techniques results in different repaired alignments, i.e., there is not consistency

on the results of the alignment repairing techniques.

4 PROGRESS SO FAR

In this section, we evaluate the progress made by ontology matching tools in matching large on-
tologies. We use the results provided by the OAEI conference in its large biomedical track for the of
period 2012–2016. We specifically exploit the results provided to answer the following questions:

(1) Is there a significant increase in the quality (precision, recall, and F-measure) of the map-
pings generated by the ontology matching tools over 5 years?

(2) Have the tools managed to register a significant reduction in execution time of the ontol-
ogy matching processes over 5 years?

(3) What are the most popular techniques that the scalable tools are using to achieve
scalability?

(4) Are the number of tools that can handle large matching tasks increasing?

We only use the results of the tools that completed all nine (2012) and six tasks (2013–2016) of the
large biomedical track. The summary of results is provided in Table 7.

From the summary in Table 7, ontology matching tools have consistently registered a high pre-
cision from the inception of large biomedical track in 2012. The average best precision values in
all 5 years are above 90% (see Table 8) with YAM++ recording the highest average precision of
94.2% in 2013. This is still the average upper limit that no tool has been able to scale. Over 5 years,
the average best precision has been fluctuating between 90.3% and 94% with the years 2013 and
2015 recording the highest increase of 0.41 and 0.23 from the previous year, respectively. On the
overall, tools have been successful in achieving high precision in large ontology matching tasks.
The overall best performing tools in precision over 5 years include ServOMapL (2012), YAM++
(2013), LogMap-C (2014), RSDLWB (2015), and AML (2016). Apart from GOMMA and its variant
GOMMABK , all other tools have generated mappings with an average precision of above 80%.
When it comes to recall, the highest attained average value was 79.1% in 2012 by YAM++. No
tool has been able to exceed this average in large ontology matching tasks. The average best re-
call has been fluctuating between 72.8% and 79.1% over five years. Compared to precision, tools
are still lagging behind in producing mappings thath have high recall. The highest average recall
79.1% has a margin of 11.2% from the lowest best-recorded precision, 90.3%, over 5 years. The lead-
ing tools in recall over the 5 years are GOMMABK (2012), YAM++ (2013), AML (2014), XMAPBK

(2015), and AML (2016). Some tools such as IAMA (2013) and RSDLWB (2015) produced mappings
with remarkably low recall average values of 38.6% and 23.6%, respectively. F-measure has been
marginally increasing over the years, as shown in Table 8, with the highest average value recorded
being 82.4%, which was attained in 2016 by AML. The consistent improvement in F-measure over
the years shows that tools are making progress in improving the quality of mappings they gener-
ate. AML has generated mappings with the best F-measure for the last 3 years, making it one of
the most stable tools for matching large ontologies. When it comes to execution time, LogMaplite
has consistently provided lowest time. It took an average of only 10 seconds to complete all six

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:29

Table 7. Performance of Ontology Matching Tools in Large Biomedical Track (2012–2016)

Tool Scalability Technique Average precision Average recall Average F-measure Average Time(s)

2012

YAM++ Indexes 0.876 0.781 0.782 7535

ServOMapL Indexes 0.890 0.699 0.780 264

LogMap-noe Indexes 0.869 0.695 0.770 440

GOMMABK Blocking Parallelizaion 0.767 0.791 0.768 647

LogMap Indexes 0.869 0.684 0.762 341

ServOMap Indexes 0.903 0.657 0.758 256

GOMMA Blocking Parallelizaion 0.746 0.553 0.625 593

LogMaplite Indexes 0.831 0.515 0.586 85

2013

YAM++ Indexes 0.942 0.728 0.817 344

AML-BK HashMap 0.908 0.709 0.792 302

LogMap-BK Indexes 0.904 0.700 0.785 399

AML-BK-R HashMap 0.921 0.692 0.785 331

AML HashMap 0.926 0.683 0.783 280

LogMap Indexes 0.910 0.689 0.762 341

AML-R HashMap 0.939 0.666 0.776 303

GOMMA2012 Blocking Parallelization 0.813 0.567 0.654 320

LogMaplite Indexes 0.874 0.517 0.598 61

ServOMap Indexes 0.903 0.657 0.758 256

GOMMA Blocking Parallelization 0.746 0.553 0.625 593

LogMaplite Indexes 0.831 0.515 0.586 85

SPHeRe Parallelization 0.857 0.464 0.569 7006

IAMA Indexes 0.912 0.386 0.517 117

2014

AML HashMap 0.906 0.752 0.819 307

LogMap Indexes 0.890 0.719 0.792 291

LogMap-Bio Indexes 0.843 0.744 0.784 1439

XMAP Parallelization 0.813 0.702 0.750 210

LogMap-C Indexing 0.907 0.559 0.688 1055

LogMaplite Indexing 0.868 0.539 0.613 52

2015

AML HashMap 0.905 0.754 0.819 323

X MAPBK Parallelization 0.904 0.764 0.819 420

LogMap Indexes 0.903 0.714 0.794 435

LogMap-Bio Indexes 0.867 0.733 0.789 2285

XMAP Parallelization 0.892 0.654 0.751 395

LogMap-C Indexes 0.907 0.551 0.613 1436

LogMaplite Indexes 0.868 0.532 0.613 221

RSDLWB Early pruning 0.923 0.236 0.0.367 222

2016

AML HashMap 0.907 0.7588 0.824 214

LogMap-Bio Indexes 0.8738 0.7322 0.7931 2386

LogMap Indexes 0.897 0.7143 0.7918 243

LogMaplite Indexes 0.8581 0.5318 0.789 10

tasks in the year 2016. However, this comes at the expense of the quality of mappings it generates
since LogMaplite also posts the lowest F-measure of 0.789 in the year 2016. If we consider the
execution times of the leading tools in F-measure in 5 years, we notice that the execution time
has been decreasing. In 2012 YAM++, which generates mappings with the best average F-measure,
takes an average time of 7,535 seconds to complete a task. It manages to reduce this time to 344
seconds in 2013. This represents a 95.4% reduction in execution time. The reduction in execution
time is attributed to the fact that the pre-processing and indexing algorithm was revised such that
its complexity O(n2) in 2012 was reduced to O(| |n | | + | |v | |) in 2013 [73], where n and v are entities

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

75:30 P. Ochieng and S. Kyanda

Table 8. Leading Precision, Recall, and F-measure Values in the Last 5 Years (2012-2016)

Top average precision Top average recall Top average F-measure

2012
0.903 0.791 0.782

2013

0.942 0.728 0.817
2014

0.907 0.752 0.819
2015

0.923 0.764 0.819
2016

0.907 0.7588 0.824

contained in the source and target ontologies. In 2014, AML generates mappings with the best
average F-measure with each task taking an average time of 307 seconds. This increases slightly
to 323 seconds in 2015. In 2016, AML reduces the average execution time of a matching task is
reduced to 214 seconds. This overall shows that tools are achieving success in reducing time com-
plexity of the matching process. Notable exceptions are LogMapBio, LogMap-C, and XMAP. Out
the nine distinct tools presented in Table 7 (i.e., not considering the different variants of a tool),
five of them use data structures (HashMap and indexes) to achieve scalability. This represents
56% of the tools, hence making the use of data structures the most popular technique used by
the tools that have been able achieve scalability in matching large ontologies at OAEI conference.
Two tools (IAMA and SPHeRe) use parallelization to achieve scalability. While GOMMA combines
partitioning and parallelization to achieve scalability. Over 5 years, only nine distinct tools have
been able to complete all the large biomedical track matching tasks. This shows that scalability is
still a major challenge to most ontology matching tools.

5 OPEN CHALLENGES

From this review, we identified the following challenges that still remain in the matching of large
ontologies.

(1) Mapping Cardinality.
From the review, all the scalable tools only establish 1:1 cardinality mappings. However,
not all mapping scenarios are restricted to 1:1 mappings. There are instances where one-
to-many or many-to-many mappings may be desired. In such cases, the space and time
complexity challenges become more exacerbated as compared to 1:1 mappings. Therefore,
tools need to design scalability techniques that, in addition to handling 1:1 cardinality
mappings, can also scale when one-to-many or many-to-many cardinality mappings are
desired.

(2) Parallel Matching.
—There is need for a further evaluation on the impact of the different multiple matcher

combination techniques on the execution time of an ontology matching tool while using
parallel execution notwithstanding some work done on this by Reference [85].

—The performance gain of combining different aggregation techniques over employing
only one technique during parallel composition of matchers needs to be evaluated.

—A discussion on workload balancing among the PUs during parallel ontology matching
is still lacking.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:31

(3) Automatic Repair.
—During an ontology mapping repair process, how can a tool separate coherence viola-

tions caused due to wrong mappings generated and those caused due to incompatibility
between the input ontologies. Some recent works such as Reference [102] have proposed
heuristics of minimizing conservativity violations in ontology matching.

—During the ontology mapping repair process, how can the tradeoff between scalability
and accuracy of mapping repair be improved?

(4) Ontology Partitioning.
—What percentage of execution time should be allocated to the ontology partitioning

algorithm for the partitioning of the input ontology to yield maximum reduction in
execution time?

—What is the effect of number of partitions on the quality of mappings produced by a
matching tool?

(5) Recall.
—From Table 7, it is clear that scalable ontology matching tools achieve scalability at

the expense of recall. Therefore, the key question here is, What new techniques can be
integrated into the ontology matching tools to achieve higher recall in large ontology
matching tasks?

6 CONCLUSION

We have provided a discussion on quality assurance and scalability techniques used by ontology
matching tools in large ontology matching tasks. The techniques are mainly geared toward ad-
dressing space complexity, time complexity, and improving quality of the final alignment. We have
also provided a state-of-the-art discussion with regard to the progress tools have made in matching
large-scale ontologies as well as some open challenges that we identified, which we hope will help
in progressing the state of the art.

REFERENCES

[1] M. J. S. Abadi and Kamran Zamanifar. 2011. Producing complete modules in ontology partitioning. Proceedings of

the 2011 International Conference on Semantic Technology and Information Retrieval (STAIR’11). 137–143.
[2] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. 1989. Efficient management of transitive relationships in

large data and knowledge bases. SIGMOD’89: Proceedings of the 1989 ACM SIGMOD International Conference on

Management of Data (1989). 253–262.
[3] Alsayed Algergawy, Sabine Massmann, and Erhard Rahm. 2011. A clustering-based approach for large-scale on-

tology matching. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 415–428.
[4] M. B. Amin, W. Ali Khan, S. Hussain, D.-M. Bui, O. Banos, B. H. Kang, and S. Lee. 2016. Evaluating large-scale

biomedical ontology matching over parallel platforms. IETE Technical Review (Institution of Electronics and Telecom-

munication Engineers, India) 33, 4 (2016), 415–427.
[5] Muhammad Bilal Amin, Rabia Batool, Wajahat Ali Khan, Sungyoung Lee, and Eui-Nam Huh. 2014. SPHeRe. The

Journal of Supercomputing 68, 1 (2014), 274–301.
[6] Diego Andrade, Basilio B. Fraguela, James Brodman, and David Padua. 2009. Task-parallel versus data-parallel

library-based programming in multicore systems. Proceedings of the 17th Euromicro International Conference on Par-

allel, Distributed and Network-Based Processing (PDP’09), 101–110.
[7] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 2007. Modern Information Retrieval. ACM Press/Addison-Wesley

(1999).
[8] Blaise Barney. 2016. Introduction to parallel computing. Retrieved June 14, 2016 from https://computing.llnl.gov/

tutorials/parallel_comp.
[9] K. Belhajjame, Norman W. Paton, Alvaro A. A. Fernandes, Cornelia Hedeler, and Suzanne M. Embury. 2011. User

feedback as a first class citizen in information integration systems. Proceedings of the Conference on Innovative Data

Systems Research (CIDR’11). 175–183.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

https://computing.llnl.gov/tutorials/parallel_comp

75:32 P. Ochieng and S. Kyanda

[10] J. A. Blake et al. 2015. Gene ontology consortium: Going forward. Nucleic Acids Research (2015), D1049–D1056.
[11] Watson Wei Khong Chua and Jung Jae Kim. 2010. Eff2Match results for OAEI 2010. CEUR Workshop Proceedings 666,

1 (2010), 150–157.
[12] Colm Conroy, Declan O’Sullivan, and Dave Lewis. 2007. A “tagging” approach to ontology mapping. CEUR Workshop

Proceedings (2007). 1–5.
[13] I. F. Cruz, Francesco Loprete, and Matteo Palmonari. 2014. Pay-as-you-go multi-user feedback model for ontology

matching. In Proceedings of the International Conference on Knowledge Engineering and Knowledge Management. 80–
96.

[14] Isabel F. Cruz, Cosmin Stroe, and Matteo Palmonari. 2012. Interactive user feedback in ontology matching using
signature vectors. Proceedings of the International Conference on Data Engineering (2012). 1321–1324.

[15] Syrine Damak, Hazem Souid, Marouen Kachroudi, and Sami Zghal. 2015. EXONA results for OAEI 2015 and Sami
Zghal. The 10th International Workshop on Ontology Matching - Ontology Alignment Evaluation Initiative (2015). 5.

[16] Mathieu D’Aquin, Marta Sabou, and Enrico Motta. 2006. Modularization: A key for the dynamic selection of relevant
knowledge components. CEUR Workshop Proceedings 232 (2006).

[17] V. Jirkovský and R. Ichise. 2013. Mapsom: User involvement in ontology matching. In Proceedings of the 3rd JIST

Conference, volume 2. Springer.
[18] D. de Vaus. 2002. Surveys in social research. Routledge (2002).
[19] J. Dean and S. Ghemawat. 2004. Simplified data processing on large clusters. Sixth Symp. Oper. Syst. Des. Implement.

1 (2004), 107–113.
[20] Rudra Pratap Deb Nath, Hanif Seddiqui, and Masaki Aono. 2012. Resolving scalability issue to ontology instance

matching in semantic web. Proceedings of the 15th International Conference on Computer and Information Technology,

(ICCIT’12). 396–404.
[21] Chiara Del Vescovo, Bijan Parsia, Uli Sattler, and Thomas Schneider. 2011. The modular structure of an ontology:

Atomic decomposition. IJCAI International Joint Conference on Artificial Intelligence (2011), 2232–2237.
[22] Gayo Diallo. 2014. An effective method of large scale ontology matching. Journal of Biomedical Semantics 5 (2014),

44.
[23] Warith Eddine Djeddi and Mohamed Tarek Khadir. 2013. XMapGen and XMapSiG results for OAEI 2013. CEUR

Workshop Proceedings (2013). 203–210.
[24] Warith Eddine Djeddi and Mohamed Tarek Khadir. 2014. XMap++: Results for OAEI 2014. CEUR Workshop Proceed-

ings (2014). 163–169.
[25] Hong Hai Do and Erhard Rahm. 2007. Matching large schemas: Approaches and evaluation. Information Systems

(2007), 857–885.
[26] Pedro Domingos, Daniel Lowd, Stanley Kok, Hoifung Poon, Matthew Richardson, and Parag Singla. 2008. Just add

weights: Markov logic for the semantic web. Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) (2008). 1–25.
[27] P. Doran, V. Tamma, and L. Iannone. 2007. Ontology module extraction for ontology reuse: An ontology engineering

perspective. Proceedings of the 16th ACM Conference in Information and Knowledge Management (2007). 61–70.
[28] Zlatan Dragisic, Valentina Ivanova, Patrick Lambrix, Daniel Faria, Ernesto Jiménez-Ruiz, and Catia Pesquita. 2016.

User validation in ontology alignment. In Proceedings of the International Semantic Web Conference 9981, 1 (2016),
200–217.

[29] Warith Eddine, Mohamed Tarek, and Sadok Ben. 2016. XMap: Results for OAEI 2016. Proceedings of the 11th Inter-

national Workshop on Ontology Matching 1766, 5 (2016), 122–127.
[30] P. Euzenat and J. Shvaiko. 2005. A survey of schema-based matching approaches. Journal on Data Semantics (2005).
[31] P. Euzenat and J. Shvaiko. 2007. Ontology Matching. Springer, Heidelberg.
[32] Muhammad Fahad. 2015. Initial results for ontology matching workshop 2015 DKP-AOM: Results for OAEI 2015. In

CEUR Workshop Proceedings 1766, 5 (2015), 82–96.
[33] Daniel Faria, Catarina Martins, Amruta Nanavaty, Daniela Oliveira, Booma S. Balasubramani, Aynaz Taheri, Catia

Pesquita, Francisco M. Couto, and Isabel F. Cruz. 2015. AML results for OAEI 2015. In CEUR Workshop Proceedings.
116–123.

[34] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, and F. M. Couto. 2013. The AgreementMakerLight Ontology

Matching System. Springer-Verlag, Berlin, 527–541.
[35] Jennifer Golbeck, Gilberto Fragoso, Frank Hartel, Jim Hendler, Jim Oberthaler, and Bijan Parsia. 2001. The national

cancer institute’s thésaurus and ontology. Web Semantics: Science, Services and Agents on the World Wide Web (2001).
[36] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. 2007. A logical framework for modularity

of ontologies. IJCAI International Joint Conference on Artificial Intelligence (2007), 298–303.
[37] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. 2008. Modular reuse of ontologies:

Theory and practice. Journal of Artificial Intelligence Research (2008), 273–318.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:33

[38] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. 2005. Automatic partitioning of OWL
ontologies using e-connections. CEUR Workshop Proceedings 946, 1 (2005), 160–167.

[39] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. 2006. Modularity and web ontologies.
Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (2006). 198–
209.

[40] Anika Gross, Michael Hartung, Toralf Kirsten, and Erhard Rahm. 2010. On matching large life science ontologies
in parallel. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) 6254 LNBI (2010). 35–49.
[41] Anika Groß, Michael Hartung, Toralf Kirsten, and Erhard Rahm. 2012. GOMMA results for OAEI 2012. Proceedings

of the International Semantic Web Conference 946, 2 (2012), 160–167.
[42] Marko Gulić and Boris Vrdoljak. 2013. CroMatcher - Results for OAEI 2013. In Proceedings of the 10th International

Workshop on Ontology Matching, volume 1545. Bethlehem, PA, USA, 117–122.
[43] Marko Gulic, Boris Vrdoljak, and Marko Banek. 2016. CroMatcher: An ontology matching system based on auto-

mated weighted aggregation and iterative final alignment. Journal of Web Semantics 41 (2016), 50–71.
[44] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. 2008. Laconic and precise justifications in OWL. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

(2008). 323–338.
[45] Wei Hu, Yuanyuan Zhao, and Yuzhong Qu. 2006. Partition-based block matching of large class hierarchies. Proceed-

ings of the 1st Asian Semantic Web Conference (ASWC’06). 72–83.
[46] Jakob Huber, Timo Sztyler, Jan Noessner, and Christian Meilicke. 2011. CODI: Combinatorial optimization for data

integration—Results for OAEI 2011. Proceedings of the 6th International Workshop on Ontology Matching 814, 1 (2011),
134–141.

[47] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. 2010. Quality management on Amazon mechanical turk.
Proceedings of the ACM SIGKDD Workshop on Human Computation (HCOMP’10). 64.

[48] Robert W. Irving, David F. Manlove, and Gregg O’Malley. 2009. Stable marriage with ties and bounded length pref-
erence lists. Journal of Discrete Algorithms (2009), 213–219.

[49] Valentina Ivanova, Patrick Lambrix, and Johan Å. Berg. 2015. Requirements for and evaluation of user support for
large-scale ontology alignment. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). 3–20.
[50] Arkadiusz Jachnik, Andrzej Szwabe, Pawel Misiorek, and Przemyslaw Walkowiak. 2012. TOAST results for OAEI

2012. CEUR Workshop Proceedings (2012). 205–212.
[51] H. V. Jagadish. 1990. A compression technique to materialize transitive closure. TODS (1990). 558–598. DOI:https://

doi.org/10.1145/99935.99944
[52] Fatsuma Jauro, S. B. Junaidu, and S. E Abdullahi. 2014. Falcon-AO++ - An improved ontology alignment system.

International Journal of Computer Applications 94, 2 (2014), 1–7.
[53] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. 2009. Ontology matching with semantic verifi-

cation. Journal of Web Semantics 7, 3 (2009), 235–251. arxiv:NIHMS150003
[54] E. Jim. 2014. OAEI 2014—LogMap family results for OAEI 2014. In CEUR Workshop Proceedings. 3–7.
[55] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. 2011. LogMap: Logic-based and scalable ontology matching. Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics). 273–288.
[56] E. Jiménez-Ruiz, B. Cuenca Grau, R. Berlanga, and I. Horrocks. 2009. Towards a logic-based assessment of the com-

patibility of UMLS sources. CEUR Workshop Proceedings (2009). S2.
[57] E. Jiménez-Ruiz, B. Cuenca Grau, A. Solimando, and V. Cross. 2015. LogMap family results for OAEI 2015. CEUR

Workshop Proceedings (2015). 171–175.
[58] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Yujiao Zhou. 2011. LogMap 2.0: Towards logic-based, scalable

and interactive ontology matching. In SWAT4LS 66, 2 (2011), 45–46.
[59] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian Horrocks. 2012. Large-scale interactive ontology

matching: Algorithms and implementation. Frontiers in Artificial Intelligence and Applications, 444–449.
[60] Ernesto Jiménez-Ruiz, Christian Meilicke, Bernardo Cuenca Grau, and Ian Horrocks. 2013. Evaluating mapping

repair systems with large biomedical ontologies. CEUR Workshop Proceedings (2013). 1000–1010.
[61] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently answering reachability queries on very

large directed graphs. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data -

(SIGMOD’08). 595.
[62] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. 2007. Finding all justifications of OWL DL

entailments. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) (2007). 267–280.

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

https://doi.org/10.1145/99935.99944

75:34 P. Ochieng and S. Kyanda

[63] Wajahat Ali Khan, Muhammad Bilal Amin, Asad Masood Khattak, Maqbool Hussain, and Sungyoung Lee. 2013.
System for parallel heterogeneity resolution (SPHeRe) results for OAEI 2013. In CEUR Workshop Proceedings. 184–
189.

[64] Nouha Kheder and Gayo Diallo. 2015. ServOMBI at OAEI 2015. Proceedings of the 10th International Workshop on

Ontology Matching—Ontology Alignment Evaluation Initiative (2015). 1–6.
[65] Abderrahmane Khiat and Moussa Benaissa. 2014. InsMT/InsMTL results for OAEI 2014 instance matching. CEUR

Workshop Proceedings (2014). 120–125.
[66] Wacław Kuśnierczyk. 2008. Taxonomy-based partitioning of the Gene Ontology. Journal of Biomedical Informatics

41, 2 (2008), 282–292.
[67] Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, and Erhard Rahm. 2011. Evolution of the

COMA match system. CEUR Workshop Proceedings (2011). 49–60.
[68] Cynthia Matuszek, John Cabral, Michael Witbrock, and John Deoliveira. 2006. An introduction to the syntax and

content of Cyc. Proceedings of the 2006 AAAI Spring Symposium on Formalizing and Compiling Background Knowledge

and Its Applications to Knowledge Representation and Question Answering (2006). 44–49.
[69] Christian Meilicke. 2011. Alignment Incoherence in Ontology Matching - dissertation - meilicke. Ph.D. Dissertation.

Universitat Mannheim.
[70] C. Meilicke and H. Stuckenschmidt. 2007. Analyzing mapping extraction approaches. CEUR Workshop Proceedings

(2007).
[71] C. Meilicke, H. Stuckenschmidt, and A. Tamilin. 2007. Repairing ontology mappings. In Proceedings of AAAI 67, 3

(2007), 1408–1423.
[72] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity flooding: A versatile graph matching al-

gorithm. Data Engineering (2002), 117–128.
[73] DuyHoa Ngo and Zohra Bellahsene. 2013. YAM++ - Results for OAEI 2013. CEUR Workshop Proceedings (2013).

211–218.
[74] Duy Hoa Ngo and Zohra Bellahsene. 2016. Overview of YAM++ - (not) yet another matcher for ontology alignment

task. Journal of Web Semantics 41 (2016), 30–49.
[75] Khai Nguyen and Ryutaro Ichise. 2013. SLINT+ results for OAEI 2013 instance matching. CEUR Workshop Proceedings

(2013). 177–183.
[76] Mathias Niepert, Christian Meilicke, and Heiner Stuckenschmidt. 2010. A probabilistic-logical framework for ontol-

ogy matching. In Proc. of AAAI (2010), 1413–1418.
[77] Natalya F. Noy and Mark A. Musen. 2004. Specifying ontology views by traversal. The Semantic Web ISWC 2004

(2004). 713–725.
[78] Fernando Osorno-Gutierrez, Norman W. Paton, and Alvaro A. A. Fernandes. 2013. Crowdsourcing feedback for

pay-as-you-go data integration. CEUR Workshop Proceedings (2013). 32–37.
[79] Lorena Otero-Cerdeira, Francisco J. Rodríguez-Martínez, and Alma Gómez-Rodríguez. 2015. Ontology matching: A

literature review. Expert Systems with Applications (2015), 949–971.
[80] Jyotishman Pathak, Thomas M. Johnson, and Christopher G. Chute. 2009. Survey of modular ontology techniques

and their applications in the biomedical domain. Integrated Computer-Aided Engineering 3 (2009), 225–242.
[81] Heiko Paulheim, Sven Hertling, and Dominique Ritze. 2013. Towards evaluating interactive ontology matching tools.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) (2013). 31–45.
[82] Pavel Shvaiko and Jerome Euzenat. 2008. Ten challenges of ontology matching. In Proceedings of the 7th International

Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE’08). 1163–1181.
[83] Adam Pease, Ian Niles, and John Li. 2002. The suggested upper merged ontology: A large ontology for the semantic

web and its applications. Imagine (2002), 7–10.
[84] Catia Pesquita, Daniel Faria, Emanuel Santos, and Francisco M. Couto. 2013. To repair or not to repair: Reconciling

correctness and coherence in ontology reference alignments. CEUR Workshop Proceedings (2013). 13–24.
[85] Eric Peukert and S. Massmann. 2010. Comparing similarity combination methods for schema matching. Journal of

GI Jahrestagung (2010), 692–701.
[86] Erhard Rahm. 2011. Towards large-scale schema and ontology matching. Schema Matching and Mapping (2011),

3–27.
[87] Cornelius Rosse and José L. V. Mejino. 2003. A reference ontology for biomedical informatics: The foundational

model of anatomy. Journal of Biomedical Informatics 36, 6 (2003), 478–500.
[88] F. Hamdi, B. Safar, C. Reynaud, and H. Zargayouna. 2009. Alignment-based partitioning of large-scale ontologies.

Advances in Knowledge Discovery and Management. Studies in Computational Intelligence Series. Springer, Heidelberg.
[89] Emanuel Santos, Daniel Faria, Catia Pesquita, and Francisco M. Couto. 2015. Ontology alignment repair through

modularization and confidence-based heuristics. PLoS ONE (2015), 1–17. arxiv:1307.5322

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

Large-Scale Ontology Matching: State-of-the-Art Analysis 75:35

[90] Cristina Sarasua, Elena Simperl, and Natalya F. Noy. 2012. CrowdMap: Crowdsourcing ontology alignment with
microtasks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) 7649 LNCS (2012). 525–541.
[91] K. Saruladha and S. Ranjini. 2016. COGOM: COgnitive theory based ontology matching system. Procedia - Procedia

Computer Science (2016), 301–308.
[92] Frederik C. Schadd and Nico Roos. 2014. Alignment evaluation of MaasMatch for the OAEI 2014 campaign. CEUR

Workshop Proceedings 1317 (2014). 135–141.
[93] Anne Schlicht and Heiner Stuckenschmidt. 2007. Criteria-based partitioning of large ontologies. Proceedings of the

4th International Conference on Knowledge Capture (2007). 171–172.
[94] Anne Schlicht and Heiner Stuckenschmidt. 2008. A flexible partitioning tool for large ontologies. Proceedings - 2008

IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008 (2008). 482–488.
[95] Stefan Schulz, Ronald Cornet, and Kent Spackman. 2011. Consolidating SNOMED CT’s ontological commitment.

Applied Ontology 6, 1 (2011), 1–11.
[96] Julian Seidenberg, Julian Seidenberg, Alan Rector, and Alan Rector. 2006. Web ontology segmentation: Analysis,

classification and use. WWW’06: Proceedings of the 15th International Conference on World Wide Web. 13–22.
[97] Guohua Shen, Yinling Liu, Fei Wang, Jia Si, Zi Wang, Zhiqiu Huang, and Dazhou Kang. 2014. OMReasoner: Combi-

nation of multi-matchers for ontology matching: Results for OAEI 2014. CEUR Workshop Proceedings (2014). 142–148.
[98] Feng Shi, Juanzi Li, Jie Tang, Guotong Xie, and Hanyu Li. 2009. Actively learning ontology matching via user inter-

action. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics) (2009). 585–600.
[99] P. Shvaiko and J. Euzenat. 2013. Ontology matching: State of the art and future challenges. Knowledge and Data

Engineering, IEEE (2013). 158–176.
[100] Jomar Silva, Fernanda Araujo Baião, and Kate Revoredo. 2016. ALIN results for OAEI 2016. International Semantic

Web Conference (ISWC 2016) (2016).
[101] Klaus Simon. 1988. An improved algorithm for transitive closure on acyclic digraphs. Theoretical Computer Science

58, 3 (1988), 325–346.
[102] Alessandro Solimando, Ernesto Jimenez-Ruiz, and Giovanna Guerrini. 2017. Minimizing conservativity violations

in ontology alignments: Algorithms and evaluation. Knowl. Inf. Syst. 51, 3 (2017), 775–819. DOI:https://doi.org/10.
1007/s10115-016-0983-3

[103] Rebecca Steorts, Samuel Ventura, Mauricio Sadinle, and Stephen Fienberg. 2014. A comparison of blocking methods
for record linkage. Proceedings of the International Conference on Privacy in Statistical Databases 70, 3 (2014), 253–268.
arxiv:1407.3191

[104] Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias. 2005. A string metric for ontology alignment. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

(2005). 624–637.
[105] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. 2008. A modularization-based approach to finding

all justifications for OWL DL entailments. Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) (2008). 1–15.
[106] Axel Tenschert, Matthias Assel, Alexey Cheptsov, Georgina Gallizo, Emanuele Della Valle, and Irene Celino. 2009.

Parallelization and distribution techniques for ontology matching in urban computing environments. CEUR Work-

shop Proceedings 551 (2009). 248–249.
[107] Uthayasanker Thayasivam and Prashant Doshi. 2013. Speeding up batch alignment of large ontologies using MapRe-

duce. Proceedings—2013 IEEE 7th International Conference on Semantic Computing (ICSC’13). 110–113.
[108] Peng Wang. 2010. Lily-LOM: An efficient system for matching large ontologies with non-partitioned method. In

CEUR Workshop Proceedings, Vol. 658. 69–72.
[109] Mohamed T. Warith E. 2013. Introducing artificial neural network in ontology alignment process. Springer-Verlag,

Berlin, 176–186.
[110] M. El-Abdi, H. Souid, M. Kachroudi, and S. Ben-Yahia. 2015. CLONA results for OAEI 2015. In Proceedings of the 10th

Workshop on Ontology Matching ISWC 2015, USA 72, 1 (2015).
[111] Hang Zhang, Wei Hu, and Yu-zhong Qu. 2012. VDoc+: A virtual document based approach for matching large

ontologies using MapReduce. Journal of Zhejiang University-SCIENCE C (Computers & Electronics) 13, 4 (2012), 257–
267.

[112] Yuanzhe Zhang, Xuepeng Wang, and Shizhu He. 2013. IAMA results for OAEI 2013. In Proceedings of the 8th Inter-

national Workshop on Ontology Matching 1111 (2013), 45–47.

Received October 2016; revised January 2018; accepted April 2018

ACM Computing Surveys, Vol. 51, No. 4, Article 75. Publication date: July 2018.

View publication statsView publication stats

https://doi.org/10.1007/s10115-016-0983-3
https://www.researchgate.net/publication/325391116

