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A Localization Property of Line Spectrum Frequencies

G. A. Mian and G. Riccardi

Abstract—The interlacing property for the line spectrum frequencies
(LSF’s) is extended to the LSF’s associated to successive order predic-
tor poly ials. The corresp g separation theorem gives the most
precise lower and upper bounds of the intervals which the LSF’s may
belong to.

1. INTRODUCTION

Among the most used spectral parametrization parameters in
speech coding, LSF’s have many properties which make them suitable
for speech encoding. They were first introduced in {1]. In [2]-[4] it is
shown that LSF’s encode speech spectral information more efficiently
than other transmission parameters. Their efficient computation is
addressed to in [5], [6]. Alternative interpretations of their role are
given in [7], [8].

The starting point for deriving LSF’s is the prediction error filter
Ap(2)

M
Z = ap =1 0
with M the predictor order and a; the predictor coefficients which
are the solutions to the Yule-Walker equations [9]. The intimate cor-
respondence between LSF’s, predictor taps and reflection coefficients
has been shown with different approaches. The Levinson-Durbin
solution of the Yule-Walker equations, concisely expresses a recursive
relationship between the reflection coefficients, k., and the mth and
(m — 1)th order prediction filters A, (2) and Ap—1(2)

Am( ) = Ame1(2) + kmz " Amo1(2) (2a)
(2) = kmAm-1(2) + 27 A ()
m=12-, M (2b)

with Am_1(2) = 27" Apog (271
Am_1(z). By letting k., = %1 in (2a), we obtain two polyno-
mials Pp(z) (km = 1) and Q. (2) (km = —1), symmetric and
antisymmetric, respectively. The LSF’s corresponding to (m — 1)th
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), the reciprocal polynomial of

order polynomial A,,1(z), are the zeros of polynomials Py (=) and

Qm(z)

Pol2) = Am1(2) + 27 Ao (2) = f:p,'z_' (3a)
=
Qum(2) = Am—1(2) — 27" A ( Zq” (3b)
From (3a) and (3b) it is
A (z) = PmE) +Qm(z) "2' @m(2) (4a)
T Ao (z) = ———P"‘(z) () (4b)

which give polynomials A,.—1(z) and >~* A,_1(2) as linear com-
binations of the symmetric and antisymmetric polynomials Pr.(z)
and Qm(z).

The main properties of LSF’s and their relationships with the
predictor coefficients have been studied in [1], [2] and in [7], [8].
A key result is that for Am_1(z) to be stable it is necessary and
sufficient that the zeros of P,,(z) and Q..{z) are simple, lic on the
unit circle, interlace each other and sign(po) = sign(go).

It is worth noticing that such a theorem holds for any couple of
symmetric and antisymmetric polynomials obtained via Am-—1(z) £

2 Apm_1(27Y) for I > 0. The case I = 0 was dealt with in [10],
the case | = m — 1 in [11], [12] and the case I = m corresponds
to the polynomials in (3).

II. THE LOCALIZATION PROPERTY
Equations (2) and (3) allow one to find the relationship between
the LSF’s of two successive order polynomials, namely, between
(P, Qm) and (Pn—1,Qm—1). Replacing in (3) the polynomial
Apm—1 with its expression in terms of (Pr—1,Qm~1), we have

2Pn(2) = (14 kme1) (1 + 27 ") Py

+ (1= kmo) (1= 27 )@t (5a)
2Qm () = (14 km—1) (1 = 27" ) Py

+ (1= kme) (14 27 )Qm-1. (5b)

This recursive relationships lead to the following property for the
LSF’s of a stable predictor:

The LSF’s of the mth order lie in the open intervals between the

LSF’s of the (m—1)th order.

More precisely, denoting with Ap.—1,; and 6,15, i = 1,2,- -,
the arguments of zeros of Pn—1(z) and Qm-1(z) in the upper-
half unit circle, respectively, and denoting with A ; and &, the
same quantities of Pr.(z) and Q. (2), the An ; lie in the intervals
(6m—1,is Am—1,i),¢ = 1,2, -, and the 6, ; lie in the complementary
intervals (Am—1.i—1,0m—1,:), ¢ = 2,3,---. An example is depicted
in Fig. 1, for m = 8.

Proof: We shall refer to (5a) since similar reasonings apply
to (5b). The symmetric and antisymmetric polynomials P, (z) and

Q. (z) evaluated on the unit circle can be written as
Po(e™) = e 2B (N (63)
Qule™) = je 2 Qu(N) (6b)
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Fig. 1. Intervals containing the mth-order LSF’s Ay, ; and é,, ; in the case

m = 8

where P, ()) and Q.r, () are real trigonometric polynomials [13, pp.
257-258]. Polynomials P,,()) and Q..(X) can be factorized as

5
Pn(a) =27/ [J(cos A = c08 Ami)
m even =1
2
Qum(A) = 2™/ %sin A H(cosA — cosbm,i)
i=2
(7a)
=yt
B, (A) = 20mt1)/2 o5 2 /2 H (cos A ~ o8 A i)
m odd . ‘12;1_1
Qum(X) = 20+ 2 6ip 2 /2 H (cos A — co8 b )
i=2
(7b)

where the A, (and A = 7 for m odd) and the 6., ; with 6,1 =0
(and A = 7 for m even) are the LSF’s corresponding to P (z) and
Qm(z), respectively. They are placed on the unit circle z = e’ with
0<A<Lw

b1 =0< A1 <2 <Am2 <--- < 7. (8)

As far as (5a) is concerned, we consider the case m odd because the
case m even can be dealt with along the same lines. The substitution
of Pn—1()) given by (7a) in (5a) leads to the relationship between
Pr(X) and (Pr—1(A), @m—1(A))

2P (A) = (1 + kpey )2(mH0/2
mpd
- cos A/2 H (cos A — cos Am—1.:)
i=1
—(1- km_1)2('"+1)/2
=gt
-sin A/2sin A H (cos X — 08 m—1,i)
=2

= Sm1(A) = Sm2(A). 9)

The location of the zeros of P,,,()\) can be determined according to
the following observations:

a) S 1(0) = (14 kppy )20 +1/2 n;Tlu — o8 Am—1,i) > 0;
Sm_2(0) = 0and Smyz(A) > 0forbm_1,1 =0 < A< bm_i2-

b) A simple inspection of (9) reveals that polynomials Sy, 1(A)
and S.. 2(A) change their sign in passing through a zero at
Am—1.i and 8,y ;, respectively.

a)

b)

)

o oS v by E} z5 B3

A

Fig. 2. Example of (a) S7,2()) and S71(A) behavior, (b) location intervals
for the roots of Pr(A) = S7,1(A) — S7.2(A), and (c) Pr(A).

Since P (A*) = 0 implies sign [Sm1(X")] = sign [Sm 2(A")],
properties a) and b) allow one to conclude that P () takes on a
zero value in each of the open (m —1)/2 intervals (8,n—1,i, Am—1.4)
with ;1,1 = 0 and A,y (m+1)72 = 7. Moreover, there is exactly
one zero in each interval because P, () is an m-degree polynomial

It may be pointed out that the actual position of zero Am: in
the interval (8,m—1,i, Am—1,;) depends on the value of the reflection
coefficient k.1, and its shifts from X\, —1 ; t0 6,n—1.i as ky—1 varies
from +1 to —1. As a result, such intervals give the best localization
of mth order LSF’s based on the values of the LSF’s of (m — 1})th
order.

Similarly, it can be verified that the zeros 6. : of polynomial
Q. ()) (except 6,.1 = 0) belong to the complementary intervals
(Am—1,i—1,0m—1,i), & > 2. O
~ Fig. 2(a) shows polynomials S7,2(A) and S7.1(}A) corresponding
to LSF’s frequencies

/\6,1 = 05 A5,2 = 15 A6y3 = 25

66,1 =0 66,2 =1.0 56@’5 = 20 5(,"4 =T

and the reflection coefficient k¢ = 0.15. Fig. 2(b) gives the intervals
where the zeros of Pr(\) must lie; for ks = 0.15 its zeros correspond
to the intersection points of polynomials S72(A) and S7.1()) as
shown in Fig. 2(c).

III. FURTHER CONSIDERATIONS

In this section, we shall show a connection (or a lack of connection)
between the localization property of the LSF’s frequencies and the
separation property of orthogonal polynomial roots.

A fundamental separation theorem regarding orthogonal polynomi-
als deals with the connection between the roots of successive order
polynomials [14]. It states that, given the roots 1 < T2 < -+ < I
(@0 = a, tm41 = b) of the polynomial P, (), belonging to a set of
polynomials orthogonal on the real interval [a, b], then each interval
(¥y,2pt1), ¥ = 0, -+, m, contains exactly one root of Ppy1(x).
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Hence, the localization property shown in the previous section,
regarding the zeros of Pn(X) and Qm(X) in terms of those of
Qm-1()) and P,_1()), would suggest the existence of a “certain”
orthogonality relationship between these polynomials. A result in this
direction has been achieved by Delsarte and Genin 7], which proved,
via a_proper map from the unit circle to the real axis, that Pr.())
and QL1 (V) = Qm(N) /sin \/2 constitute two sets of orthogonal
polynomials with different weighting functions. From the previously
quoted separation theorem, a first evaluation of the location interval
of the roots of P (A) and Qm 1(A) (i.e., the LSF’s frequencies
of mth order) can be given. Thus, with the notation used along the
paper, we can say that if (Asu—1,i, Am—1,i+1) is the interval between
successive LSF’s corresponding to Pr—1 () then, there exists exactly
one root, Am i, of P () in that interval. A similar result holds for
the zeros of Q%1 (A). Notice that, in this respect, the result of the
previous section uses the dependence of T:’m(/\) and le_l (A) from
both Prn—1(X) and Q7,_2()) to give a more precise localization of
each zero.

From these considerations one could expect that such a local-
ization property is closely related to the orthogonality of the two
sets: {Po(A), QLN), Pa(A) -+~ Pr_1(A), @he(N), Prrpa(M)} and
{Q6(0), PL(A), Q2(N) - Qiy—2(X), Pru—1(X), Qar(N)}. Namely,
such a location property would comply with the orthogonality of
B.()) 1o both Ql,_:()) and P._1(}), whose zeros are known
to interlace: each zero Am,, i@ > 1, of P ()) belongs to the
intersection of the intervals (Am—1,is Am—1,i+1), With Apm_10 =0,
and (6m—1,i, §m—1,i+1). A similar property would apply to the zeros
of Q. (). However, the orthogonality of the two previously defined
sets, does not hold, since Pr, () is orthogonal to Q-1 () through a
weighting function different from that associated to the orthogonality
of Q\_1(A) and Pr_a(A).

Below, the structure of such polynomials sets is studied, as in {7],
via Favard’s theorem [15], which states that, a succession of real
polynomials p,.(z) (po(x) = 1, p1(z) = & — @) is orthogonal with
respect to an increasing function if and only if they are generated
via a three-term recursion: p,(z) = (¢ — an)pa—1(x) — Anpn—2(x),
where n > 2, A, > 0 and a, are real numbers.

To this purpose it is useful to introduce two further relationships
between the predictors, A,.(z) and the polynomials P, (z) and

@+ (z). From (2) and (3) one has
14 k)P (2) = Am(2) + A(2) (10a)
(1= k) Qm(2) = Am(2) = Am(2). (10b)

It has been shown in [7], that (2), (3), and (10) imply the following
three-term recurrence for the sets of polynomials {P.(z)} and
{@n(2)}

Pog1(z) = (L4 27 Pu(z) + om
Q) —

2T Pa_1(2)=0 (11a)
(1427 Qo1 (2) + &z Qraa(z) =0 (11b)

with o, = (14 k1 )(1 —
km) > 0and Q) (=

The map
sU/2 4 1/2

x:-——z—zcos/\/Z, z =,

kw)>0and o, = (1 — km_1 (14
) = Qu+1/(1— 27") a symmetric polynomial.

12)

induces a one-to-one correspondence between the unit circle and real
interval [—1, +1]. Then defining two polynomials in the real variable
£

pml) = :+"'/2Pm(z) = Pm(:
gmix) = T"2Q(2) = Q=)

(13)

(11a) and (1ib) transform into
(14a)
(14b)

Pm-H(-”) = 2Ipm(1‘) + ampm—1(z)
gm(x) = 2:6(1",_1(-1‘) + Ot:ann—z(-l?)-

Equations (14a) and (14b) are the device used to prove, via
Favard’s theorem [15], the orthogonality of polynomials p..(z)
and ¢..(x). Along the same lines, a three-term recurrence between
polynomials p, () and ¢..(x) can be found. To this purpose, using
the z-domain version of (5) and (14), it is

gm — (1L + km—1)Tpm—1
+(a:; — 271 - km_l))qm-e =0 (152
(1= 22%)pmar + 42(2? — 1)gm + ampm—1 = 0. (15b)

Equations (15) allow one to build up the sets {g_1(z),
po(@),qulx) - pu—2(x), gu-1(x),pm(x)} and {go(z),pr(x),
a2(2) -+ pM-1(2), qae(®),prrr(2)} starting from polz) =
pi(xz) = 2z, g—1(x) = 0 and go(xz) = 1. The two relationships,
apart from computational efficiency, are equivalent to recursions
(14). However, since the three-term recurrences (15) do not respect
the conditions of Favard’s theorem, the corresponding polynomials
are not orthogonal. This gives an alternate proof that the localization
property of Section 2 is not related to orthogonality.

IV. CONCLUSION

The main aim of this paper has been to provide a deeper insight
in the LSF’s properties. It has been proved that there exists a strong
relationship between the location of the zeros of P () and Qm(X)
(i.e. the LSF’s of mth order) and the intervals between the zeros of
Po1()) and Qpu—1()) (ice. the LSF’s of (m — 1)th order). It results
in the most precise lower and upper bounds of intervals which the
LSF’s may belong to, a property that matches very well with the
robust computational procedure presented in [6].
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On the Periodicity of Speech Coded with
Linear-Prediction Based Analysis by Synthesis Coders

W. Bastiaan Kleijn

Abstract—The closed-loop pitch predictor (CLPP) is an essential part
of most lmear-predlctmn based analyS|s-by-syntheSIS (LPAS) coders This
corresp the relati the periodicity of the
original and reconstructed sngnals for LPAS coders with a CLPP It
is shown that the periodicity is unchanged if the periodicity of the
original signal is generated with an autoregressive model and increases
or decreases for several other signal classes. The theoretical findings are
confirmed by experiments.

I. INTRODUCTION

With few exceptions, recent implementations of linear-prediction
based analysis-by-synthesis (LPAS) speech coders, such as multipulse
and code-excited linear prediction (CELP), employ a closed-loop
pitch predictor (CLPP) [1] to increase the coding efficiency. The
determination of the CLPP parameters is an integral part of the
analysis-by-synthesis mechanism. The same basic procedure is used
by most implementations, although it may vary in details. In this
procedure, the CLPP parameters are determined on a block-by-
block basis, a block usually being referred to as a subframe. For
each subframe, the zero-input response of the CLPP is obtained for
all allowed delay values, including noninteger sample delays [2].
Each of the CLPP zero-input responses is filtered with the linear-
prediction (synthesis) filter. These “candidate” reconstructed speech
signal segments are compared to the original speech signal, using a
perceptually-meaningful criterion, and the delay corresponding to the
candidate segment which best matches the original is selected. Once
the CLPP parameters are found, its excitation is determined, again
using analysis-by-synthesis. This determination of the excitation
varies between the different LPAS coders.

Although the basic CLPP greatly enhances the coding efficiency
of the LPAS coders, the perceived level of periodicity of the recon-
structed speech quality tends to decrease with decreasing bit rate. This
is associated with a diminished speech quality. To counter this effect,
heuristic procedures have been introduced to enhance the periodicity
of the reconstructed signal [3]-[8]. Most of these procedures result
in a significant decrease of the signal-to-noise ratio and yet increase
the speech quality. Both an increase and a decrease of the perceived
level of periodicity significantly affect the speech quality. An increase
often results in “buzziness” while a decrease often results in a noisy
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character. In the periodicity-enhancement procedures one usually has
to balance these distortions.

Relatively little work has been done to quantify the properties of
the CLPP. The pitch predictor has been analyzed for stability [9], but
the efficiency with which the CLPP reconstructs periodicity has not
been quantified. The goal of this correspondence is to provide new
insight in the relation between the periodicity of the input signal,
properties of the input signal, and the periodicity of the output. In
Section H, periodicity is defined by a criterion. A relation of the
periodicity of the original and the reconstructed speech signals is then
derived in a nonrigorous fashion, and its consequences are discussed.
Experimental results which confirm this relationship are presented in
Section III and conclusions are provided in Section IV.

1I. RELATION OF PERIODICITY OF ORIGINAL AND CODED SPEECH

A. Constraints

The present work is aimed at the single-tap CLPP, with a parameter
update once per subframe. The signal to be analyzed is assumed to
be in a steady state and to have a constant pitch period. The spectral
weighting (the linear-prediction and perceptual-weighting filters) used
in LPAS coders is ignored in the derivations. However, the validity of
the derivations is not limited to the case where spectral weighting is
not applied. For each subframe a difference exists between the zero-
input response of the spectral-weighting filter for the reconstructed
signal and the same response for the original signal. To enhance
performance, this difference is subtracted from the target vector (the
vector to be matched) in the spectrally weighted domain in most (but
not all) LPAS coders. The present derivations do not account for this
difference in the zero-input responses of the spectral-weighting, but
otherwise the results are valid for the spectrally weighted case.

The pitch period is assumed to be longer than the subframe length
used for the quantization of the residual signal of the LPAS coder.
Note that the adaptive-codebook approach [10] and the conventional
filter approach to the CLPP are identical in this case. Furthermore,
when the pitch period exceeds the subframe length, the excitation to
the linear-prediction filter is simply an addition of a CLPP contribu-
tion and a fixed-codebook contribution (this broad interpretation of
the fixed codebook includes, e.g., multipulse structures).

The following notation is used. Signals are indicated by paren-
theses, e.g., (). Their value at a particular time a is indicated as
x(a). Vectors describing discrete-signal segments are characterized
by their signal begin and endpoints

2(a:atd) = [ela),z(a+ 1), xla+2),....x(a+d =1} (1)

The superscript T denotes the vector (or matrix) transpose. The
notation E[ ] denotes the ensemble average of a parameter, and P(-)
denotes probability.

B. Definition of a Periodicity Criterion
Let d be the pitch period. Then, the periodicity is defined here as

the expectation value of the measure

zla:a+d) x(a—d:a)
2la—d:a)Tx(a—d:a)
Although this criterion is not symmetrical in time, it is more amenable
to analytic manipulation than the normalized autocorrelation measure.
Experimental evaluations of the latter measure, similar to those in
Section III, give similar results to the ones described for (2).

Y(z(),a.d) = (V)
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