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C O V E R  F E A T U R E

Automated 
Natural Spoken 
Dialog 

E ngineers have long sought to design systems

that understand and act upon spoken lan-

guage. Extracting meaning from natural,

unconstrained speech over the telephone is

technically challenging, and quantifying

semantic content is crucial for engineering and eval-

uating such systems.

Traditional menu-driven speech recognition sys-

tems force users to learn the machine’s jargon, but

many people are unwilling or unable to navigate such

highly structured interactions. AT&T’s “How May

I Help You?” (HMIHY) technology (http://www.

research.att.com/~algor/hmihy) shifts the burden to

the machine by requiring it to adapt to human lan-

guage and understand what people actually say

rather than what a system designer expects them 

to say. 

The intuition underlying our approach is that for

a given task, some linguistic events are more

salient—crucial to recognize and understand—than

others. Researchers have already developed meth-

ods to automatically extract named entities such as

phone and credit card numbers embedded in nat-

ural spoken language1 and to translate utterances

into Spanish and Japanese.2 Building on these and

other early laboratory experiments,3 we have devel-

oped algorithms4,5 that automatically learn the

salient words, phrases, and grammar fragments for

a given task far more reliably than other methods. 

ACHIEVING NATURAL FUNCTIONALITY
Traditional telephony automation systems offer

a list of menu options and prompt users to navigate

to the appropriate destination to obtain service or

resolve a problem. Sometimes the machine itself

provides the desired service, such as supplying an

account balance or billing a call to a credit card,

while in other instances only a specially trained per-

son can do so. 

Menu systems can be implemented using a touch-

tone system (“Press 1 if you want x, press 2 if you

want y, …”), voice labels (“Please say collect, call-

ing card, …”), or a hybrid of the two (“Press or say

1 if you want x, …”). Each can be useful when the

list of options is short and well understood by cus-

tomers, but for certain tasks designers must resort to

unwieldy hierarchical menus that can bore and frus-

trate users. On the other hand, callers faced with

succinct menu options may have difficulty deciding

which of the proffered categories matches what they

want. In both cases, users often either bail out of the

system by pressing zero or do nothing in the hope of

eventually being connected to a person.

Determining the number of options and amount

of detail to include in menus can be difficult. In con-

trast, a human receptionist could simply handle this

same routing task by asking, “How may I help

you?” and let the caller describe the request or prob-

lem. The receptionist should know enough about

the task to transfer the caller to the appropriate per-

son or automated module.

Our goal in developing HMIHY was to engineer

a call-routing system with this same natural func-

tionality. A caller receives a greeting and makes a

request as if talking to a person. The system’s job is

to recognize and understand what the user wants—

The next generation of voice-based interface technology will enable easy-
to-use automation of new and existing communication services, making
human-machine interaction more natural. 
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not in an ontological sense, but just sufficiently to

properly direct the call. Figure 1 illustrates the sys-

tem’s basic architecture, which includes an ASR

(automatic speech recognition) component that

relies on acoustic and language models to extract

words from user speech, an SLU (spoken language

understanding) engine that uses salient grammar

fragments to extract meaning and classify customer

requests, and a dialog manager that acts upon SLU

output as well as task knowledge in an inheritance

hierarchy to complete the call-routing task. 

To illustrate HMIHY, we focus on two tasks

involving live customer traffic in a telephone net-

work. Operator services involves users placing tele-

phone calls and includes specifying billing

methods—for example, collect or calling card—as

well as requesting information such as rate and area

codes for the person making those calls. In the cus-
tomer care application, users ask questions about

items on their bill, calling plans, account balances,

and so on. 

LANGUAGE MODELING 
The state-of-the-art approach to recognizing

unconstrained spoken language involves training a

stochastic language model that predicts word

sequence probability. For example, given a sentence

S = v1 v2 ... vn , the goal is to estimate the probabil-

ity of the word vi given the history of all preceding

words: P(vi | v1 v2 ... vi –1 ). However, data sparseness

makes estimating these probabilities for all possible

histories intractable. The most familiar method is

the n-gram model, which estimates the probability

of a word based on only the preceding n – 1

words—where typically n = 3, denoted a trigram

language model. As n increases, data sparseness

and the ASR’s memory and computation require-

ments also increase. 

Variable length units
A better alternative is to selectively introduce

longer-range history in the form of variable length
units, which provide the accuracy of high-order n-

gram models but have computation and memory

requirements similar to low-order models. For ASR

language modeling, we select more frequently

occurring sequences based on entropy minimiza-

tion, which leads to expressions such as “I want to

make a,” “collect call,” and “card call” in the oper-

ator services task. Using a bigram language model

with variable length units would thus lead to terms

such as P(collect_call | I_want_to_
make_a), effectively resulting in a seven-gram

model. In previous work,6 we demonstrated how to

embed such acquired phrases into a stochastic ASR

language model. 

Salient phrases
After recognizing a user’s spoken words, the next

step is to understand what the caller said. In our

early experiments, we used methods based on a

“bag of words” model3 that analyzed text without

regard to temporal order—the words could,

metaphorically, be put into a bag and shaken up

without changing the analysis. We subsequently

discovered that exploiting an utterance’s temporal

word order has definite advantages that can

improve performance—language does indeed have

a structure that we can use to derive more reliable

understanding. 

Further, because what users say changes with

respect to context, the ASR language model must

vary over the dialog states.7 The “Measuring

Language Complexity” sidebar illustrates why lan-

guage recognition and understanding are more dif-

ficult in customer care than in operator services. 

Our first step was to develop algorithms that

automatically acquire salient phrases for a task, in

which salience is a mathematical measure of the

information content of a linguistic event. For exam-

ple, “wrong” (associated with requesting a billing

credit) is salient in the operator services task,

“wrong number” is even more salient, and “dialed

a wrong number” is more salient still.8 Phrases are

preferable to words because they have sharper

semantics and because longer events are more reli-

ably recognized in speech.

Salient grammar fragments 
The observation that many salient phrases are

similar, such as “dialed a wrong number” and

“dialed the wrong number,” led to the next step:

developing clustering algorithms that exploit a

combination of string-edit distances and semantic

distortions.4 We compactly represent salient-phrase

clusters as finite-state machines and denote these

as salient grammar fragments, as Figure 2 shows.

Phrase clusters are parsimonious, which enables

pooling of statistics across multiple low-frequency

phrases, and they are robust to ASR errors within
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Figure 1. HMIHY
architecture. A user
receives the open-
ended prompt, “How
may I help you?”
and then makes a
request as if talking
to a person. 
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grammar fragments. We exploited syntactic dis-

tortions to include hierarchical clustering as well.5 

Embedding salient phrases in the ASR language

model improves classification performance while neg-

ligibly affecting word accuracy. To classify an utter-

ance, we matched these grammar fragments against

the ASR output and applied a decision rule to com-

bine the lattice of detections and their associations. 

The following example is the transcription of a

customer utterance and ASR output with detected

salient fragments boldfaced and errors italicized. 

Transcription: Okay I got AT&T Wireless phones

and when I got them he told me that I would be

switched to 7 cents a minute for all my AT&T long

distance calling because I was on 10 10 cents One

Rate plan …

ASR: yeah I’m not AT&T Wireless_Phone and

when I got and she told me that I would be

switched to 7_Cents_A_Minutes_For_All my

AT&T long distance on that I was on 10 10 cents

One_Rate_Plan …

HMIHY detects one fragment associated with the

Cellular call type and two others with Calling
Plans. Based on strength of associations and cov-

erage, the SLU output is Calling_Plans. The

ASR errors are not salient and thus do not impact

the SLU.

CALL-TYPE CLASSIFICATION
The SLU engine’s primary function in both tasks

is to determine which service type a customer is

requesting.8 We drew on a vast amount of research

literature on techniques to classify topics in speech

as well as text categorization methods designed to

retrieve information and documents.

Customer care is intuitively a more complex task than oper-

ator services. We can quantify this intuition in terms of utterance

length, vocabulary, perplexity, and semantic complexity of the

classification task.

Utterances are significantly longer in the customer care task.

For example, the average number of words in responses to

“How may I help you?” is 19 in operator services and 39 in cus-

tomer care, as the histogram in Figure A shows. Observe that the

two distributions have a similar shape—skewed unimodal with

a long tail. Our experiments have shown that longer utterances

are harder to recognize and understand than shorter ones. 

For a random sample of 8,000 utterances, the operator ser-

vices and customer care tasks contain 3,600 and 5,200 distinct

vocabulary words, respectively. An out-of-vocabulary event

occurs when a word not previously observed in a model’s train-

ing set appears in its test set. It is well known that the higher the

OOV rate, the more difficult the automatic speech recognition

(ASR) task. Our measurements indicate that the OOV rate in

both tasks is approximately one new word every third utter-

ance. Fewer than half of these OOV words are proper nouns,

indicating the high variation in customers’ language. 

Perplexity is a traditional measure of linguistic complexity that

can be loosely interpreted as the average instantaneous vocabu-

lary of a language corpus. Higher perplexity is thus predictive

of a harder ASR task. These values are 16 for the operator ser-

vices and 39 for customer care tasks, again illustrating the latter’s

greater complexity.  

Distribution entropy is a standard measure of classification

problem difficulty—for example, a uniform distribution over

2n classes is an n-bit problem. A skewed distribution has lower

entropy—is an easier decision task—than a uniform distrib-

ution. We computed the entropy of the skewed distribution

over 23 call types in customer care as 3.3 bits per semantic

label. 

A perplexity value of 39 is equivalent to an entropy value of

~5 bits per word, or a total of ~200 bits in a 40-word utterance

that we are attempting to decode via ASR. However, we are only

seeking to reliably decode 3.3 bits per utterance. Although this

is not a rigorous argument, it suggests why call classification is

possible, with high accuracy, while ASR is far more difficult.

For example, word accuracy for these tasks is ~65 percent; accu-

racy on salient phrases is much higher at ~85 percent, and clas-

sification accuracy well exceeds 90 percent.

Measuring Language Complexity

Figure A. Histogram of utterance lengths. On average, callers’ re-
sponses to “How may I help you?” in the customer care task (1) are
more than twice as long as those in the operator services task (2).
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Call-type classification has several distinguish-

ing attributes:

• It involves speech rather than text, with the

inherent difficulties of speech recognition and

the disfluencies of conversational-style lan-

guage. 

• Input is from cooperative users who are trying

to communicate their needs and make them-

selves understood. 

• The system has the opportunity to ask con-

firming or clarifying questions of that cooper-

ative user. 

• Collateral customer profile information is

often available, which can be exploited in

understanding a request—for example, cus-

tomers who want to know how to make delin-

quent payments on their phone bill are routed

differently than other callers who want to pay

their bills.

From a database we created of what customers

say to operators, we observed that, although the

variation in vocabulary and language is large, callers

usually asked for one of 15 types of services.8 For

example, “I want to reverse the charges on this call”

is a request for a Collect call; “Can you tell me

what time it is in Tokyo?” asks for Time informa-

tion; and “I was trying to call my sister and dialed

a wrong number” is a request for a Billing
Credit. Automation for each of these call types is

straightforward. 

Queries that don’t fit into any of the predefined

categories, such as “I’ve been trying to dial this num-

ber all day and can’t get through,” are classified as

Other and directed to a human agent for resolution.

The customer care task involves very different

types of questions.9 For example, “How much

money do I owe you?” is a query for an Account
Balance, while “I don’t recognize this phone call

to Tallahassee on October 4” involves an

Unrecognized Number. 

Again, automated responses exist for both of

these scenarios. However, “What’s this charge for

one dollar and fifty cents?” asking about a Charge
on Bill, and “I have a question about my bill,”

a Billing Query, are vague. In these cases, clar-

ification is required to properly classify the call.

The multiclass call classification task provides

three traditional measures8 for rejection:

• the probability of false rejection—how often

the system falsely rejects a request for some

service or classifies it as Other; 

• the probability of correct classification—how

often a call-type classification is correct; and

• the true rejection rate—the probability that the

system correctly classifies a request as Other
and thus routes it to a human.

These three measures characterize how well the sys-

tem classifies and routes customers’ calls. 

DIALOG MANAGEMENT
Dialog provides the opportunity to ask confirm-

ing and clarifying questions, thus improving call-

type classification compared with a single

utterance. HMIHY uses a dialog manager to con-

firm the machine’s understanding when its confi-

dence is low, to clarify ambiguities in a customer’s

An interaction with “How May I Help You?” often takes more than

one turn—dialog is necessary to confirm low-confidence interpretations,

clarify ambiguities, and request missing information to complete a trans-

action. A dialog motivator is one of a small set of general principles that

govern a dialog. 

The following dialog example contains two invocations of the missing
information motivator to obtain a caller’s billing method and card num-

ber:

Machine: AT&T. How may I help you?

User: I need a credit, I got the wrong number.

Machine: What was the number that you dialed?

User: I dialed four one five two eight …

Machine: Was the call billed to the phone that you’re calling from now?

User: No, to a credit card.

Machine: What was the card number?

User: Four five six seven …

Machine: I’ve given you credit for that call. Thank you for using AT&T.

Another example illustrates the clarification motivator:

Machine: AT&T. How may I help you?

User: I have a question about my June bill.

Machine: Okay, what is your question?

User: There’s a call to Tallahassee, but I don’t know anyone there.

Machine: I can help you with that. Are you calling from your home

phone?

User: I’m calling from my house.

Machine: Please hold on while I transfer your call.

Dialog motivators exist for numerous other functions, including confir-

mation, error handling, and assumptions. 

Dialog Motivators
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request, and to gather additional information nec-

essary to complete the task.

For example, if someone wants to make a collect

call from a train station, ASR confidence might be

low because of the noisy background; the machine

should therefore confirm its recognition and under-

standing by asking, “Do you want to make a collect

call?” A different scenario arises when a user vaguely

says, “Charge this call, please.” The machine needs

to resolve the ambiguity regarding payment by

querying, “How do you want to charge this call—

to a credit card or to a third number?” To verify a

customer’s account balance, the machine would need

to ask, “What is your home phone number?”

A call flow—essentially a long if-then-else speci-

fication—defines human-machine interaction in tra-

ditional menu systems and strongly prompted

dialogs, but this approach does not scale well for

complex natural spoken dialogs. Instead, we employ

a construct algebra framework10 consisting of a col-

lection of reusable dialog motivators—generic rules

that determine what action the dialog manager

takes in its next interaction with a user and which

are portable over a range of tasks. The “Dialog

Motivators” sidebar illustrates two such motivators

for missing information and clarification. 

The set of semantic labels in call-type classifica-

tion is not a simple unstructured list. In the case of

operator services, Collect and Credit Card
are a kind of Billingmethod, and any call has a

Forward Number (the number being called).

Similarly, requests for Rate, Time, or Area Code
are all types of request for Information. 

In HMIHY, task knowledge is based on an object-

oriented inheritance hierarchy11 that must be encoded

and provided to the dialog manager and SLU mod-

ules. This inheritance hierarchy defines the relation-

ships among the call types and named entities. 

For example, a customer’s question about an

unrecognized charge is a kind of query about a

phone bill and has a dollar amount, item number,

dialed number, and so on. Representing is-a and

has-a relationships in programming languages such

as C++ or Java is fairly straightforward. The dialog

manager exploits this task knowledge and the dia-

log motivators to govern what action to perform

at each turn. Figure 3 shows how an object-oriented

inheritance hierarchy encodes is-a and has-a rela-

tionships for the operator services task.

T he “How May I Help You?” spoken dialog

system integrates numerous technologies to

offer users a better user experience as well as

more accurate routing and increased automation.

Although we have achieved call-routing perfor-

mance exceeding 90 percent success, which is far

superior to customers’ ability to self-select and nav-

igate hierarchical menus, research is continuing on

ways to improve the system. For example, training

the language models for ASR and SLU requires

Collect Calling Card

Billing_Method

Billing_CreditDial For Me

Area Code

Rate

Information Other

HMIHY

Third_Number

Forward_Num Card_Num Billing_Numis-a

has-a

Figure 3. Inheri-
tance hierarchy of
task knowledge in
operator services.
The terminal nodes
in the hierarchy pro-
vide sufficient
specificity for the
machine to take
action, while the
nonterminal nodes
require clarifying
queries from the
dialog manager.
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transcribed and annotated utterances. To resolve

this bottleneck, we are developing methods to auto-

matically acquire acoustic morphemes from

untranscribed speech. Also, while human agents

can easily determine whether an interaction is going

well or badly and modify their behavior accord-

ingly, automated techniques that let the dialog man-

ager modify its strategy remain a challenge. �
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