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Abstract

We are interested in providing automated services via natural spoken dialog systems. By natural, we mean that the
machine understands and acts upon what people actually say, in contrast to what one would like them to say. There are many
issues that arise when such systems are targeted for large populations of non-expert users. In this paper, we focus on the
task of automatically routing telephone calls based on a user’s fluently spoken response to the open-ended prompt of ‘‘How
may I help you?’’. We first describe a database generated from 10,000 spoken transactions between customers and human
agents. We then describe methods for automatically acquiring language models for both recognition and understanding
from such data. Experimental results evaluating call-classification from speech are reported for that database. These methods
have been embedded within a spoken dialog system, with subsequent processing for information retrieval and formfilling.
q 1997 Elsevier Science B.V.

Resume´ ´

Nous sommes interesses par la production de services automatises par des systemes de dialogue utilisant la parole´ ´ ´ `
naturelle. Nous entendons par naturel que la machine comprend et agit selon ce que les personnes effectivement disent, en
opposition a ce que l’on aimerait qu’ils disent. Plusieurs problemes apparaissent quand de tels systemes sont vises pour une` ` ` ´
population large d’utilisateurs qui ne sont pas des experts. Dans ce papier, nous focalisons sur la tache de routageˆ
automatique des appels telephoniques se basant sur la reponse spontanee des utilisateurs a la question ouverte ‘‘How may I´ ´ ´ ´ `
help you?’’. Nous decrivons d’abord la base de donnees generees par 1000 transactions orales entre des utilisateurs et des´ ´ ´ ´ ´
agents humains. Nous decrivons ensuite les methodes pour l’acquisition automatique, a partir des donnees, des modeles de´ ´ ` ´ `
langage pour la reconnaissance et la comprehension. Les resultats experimentaux pour l’evaluation de la classification des´ ´ ´ ´
appels sont rapportes pour cette base de donnees. Ces methodes ont ete incorporees dans un systeme de dialogue oral avec´ ´ ´ ´ ´ ´ `
des traitements subsequents pour le tri des informations et le remplissage des formes. q 1997 Elsevier Science B.V.´
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1. Introduction

There are a wide variety of interactive voice
systems in the world, some residing in laboratories,
many actually deployed. Most of these systems,
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however, either explicitly prompt the user at each
stage of the dialog, or assume that the person has
already learned the permissible vocabulary and
grammar at each point. While such an assumption is
conceivable for frequent expert users, it is dubious at
best for a general population on even moderate
complexity tasks. In this work, we describe progress
towards an experimental system which shifts the
burden from human to machine, making it the de-
vice’s responsibility to respond appropriately to what
people actually say.

The problem of automatically understanding flu-
ent speech is difficult, at best. There is, however, the
promise of solution within constrained task domains.
In particular, we focus on a system whose initial goal
is to understand its input sufficiently to route the
caller to an appropriate destination in a telecommu-
nications environment. Such a call router need not
solve the user’s problem, but only transfer the call to
someone or something which can. For example, if
the input is ‘‘Can I reÕerse the charges on this
call?’’, then the caller should be connected to an
existing automated subsystem which completes col-
lect calls. Another example might be ‘‘How do I dial
direct to Tokyo?’’, whence the call should be con-
nected to a human agent who can provide dialing
instructions. Such a call router should be contrasted
with traditional telephone switching, wherein a user
must know the phone number of their desired desti-
nation, or in recent years navigate a menu system to
self-select the desired service. In the method de-
scribed here, the call is instead routed based on the
meaning of the user’s speech.

This paper proceeds as follows. In Section 2, an
experimental spoken dialog system is described for
call-routing plus subsequent automatic processing of
information retrieval and form-filling functions. The
dialog is based upon a feedback control model,
where at each stage the user can provide both infor-
mation plus feedback as to the appropriateness of the

Ž .machine’s response Gorin, 1995a . In Section 3, a
database is described of 10 K fluently spoken trans-
actions between customers and human agents for this
task. In particular, we describe the language variabil-
ity in the first customer utterance, responding to the
prompt of ‘‘How may I help you?’’ in a telecommu-
nications environment.

In Section 4, we describe the spoken language

Ž .understanding SLU algorithms which we exploit
for call classification. A central notion in this work is
that it is not necessary to recognize and understand
every nuance of the speech, but only those fragments

Ž .which are salient for the task Gorin, 1995a . This
leads to a methodology where understanding is based
upon recognition of such salient fragments and com-
binations thereof.

There are three main components in our SLU
methodology. First is to automatically acquire salient
grammar fragments from the data, modeling those
parts of the language which are meaningful for the
task plus their statistical associations to the machine
actions. Second is to recognize these fragments in
fluent speech, searching the output of a large vocabu-
lary speech recognizer. The statistical language model
which constrains this recognizer embeds automati-
cally-acquired fragments in a stochastic finite state
machine, providing an efficient approximation to an

Žn-gram model with variable length units Riccardi et
.al., 1996 . Third, we exploit these multiple recog-

nized fragments to classify the call-type of an utter-
ance. Since the SLU is embedded within a dialog

Ž .system, the classifier provides both the best rank 1
Ž .and secondary rank 2, etc. decisions. Finally, in

Section 5, we report on experimental results for
call-classification from the above-mentioned speech
database, training on 8 K utterances and testing on
1 K.

2. A spoken dialog system

The goal of a call-router is to recognize and
understand the user’s speech sufficiently to deter-
mine the call-type. Dialog is necessary since, in
many situations, the call type cannot be determined
from a single input. This can be due to an ambiguous
request or to imperfect performance of the spoken

Ž .language understanding SLU algorithms.
One important component of dialog is confirma-

tion, wherein the machine proposes its understanding
of the user’s input, receiving reinforcement feedback
as to the appropriateness of its response. In previous
work, we have described a dialog model for integrat-
ing the meaning of initial and secondary user inputs

Ž .based on a feedback control system Gorin, 1995a,b .
In case the machine’s interpretation is in error, the
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subsequent user input can provide both disconfirma-
tion plus clarifying information. Finally, once the
call-type has been successfully negotiated and agreed
upon, there is often a subsequent form-filling dialog
to complete the information necessary to provide a
service.

To illustrate these issues, we now present several
transcripts of spoken humanrmachine dialogs with
this system. The first dialog demonstrates the basic
call-routing function where the user explicitly con-

Žfirms the machine’s interpretation, where M denotes
.machine and U denotes a human user .

M: How may I help you?
U: Can you tell me how much it is to Tokyo?
M: You want to know the cost of a call?
U: Yes, that’s right.
M: Please hold on for rate information.

The second dialog illustrates an information re-
trieval stage after call-type classification. Observe
that in addition to the call-type, the SLU algorithm
must also extract the place-name Chicago. Further
observe the use of an implicit confirmation request,
wherein the user’s silence is interpreted as affirma-
tion.

M: How may I help you?
U: What’s the area code for Chicago?
M: You want an area code.

( )U: silence
M: The area code for Chicago is 312.

In some cases, the input is ambiguous or misun-
derstood, so the device must then engage in a clarify-
ing dialog. There are several possible strategies for
such clarification. For the ambiguous user input,
‘‘Can I charge this call please?’’, the SLU algo-

Ž .rithm cf. Section 4 generates a most likely classifi-
cation of ‘‘third number billing’’ with secondary
decisions of ‘‘card billing’’ or ‘‘collect’’. The dia-
log illustrated below asks for clarification via
proposing the top choice. Alternatively, the machine
could provide a short menu, e.g., ‘‘Do you want A or
B?’’, or in this case where there is no clear winner
amongst the three choices, ask ‘‘How do you want to
bill the call?’’.

M: How may I help you?
U: Can I charge this call please?

M: You want to charge this to another number?
U: No, to my UniÕersal card.
M: You want to charge this call to a credit card.

( )U: silence
M: Please speak your card number.

In the above example, the device interprets the
user’s clarifying response to be a combination of

Ž .disconfirmation ‘‘no’’ and additional call-type in-
Ž .formation ‘‘to my UniÕersal card’’ as per our

Ž .feedback control model Gorin, 1995b . The follow-
ing example illustrates a call-type classification fol-
lowed by a form-filling subdialog.

M: How may I help you?
U: I tried calling my Aunt and got a wrong num-

ber.
M: You need a billing credit.

( )U: silence
M: Please speak the number that you dialed.
U: 908 582 2778
M: Was the call billed to the phone that you’re

calling from?
U: Yes it was.
M: You will be given credit, thank you for calling.

There are many open issues in optimizing the user
interface of such a system, in particular those of
selecting the best prompts to stimulate maximally
consistent and informative responses from large pop-

Žulations of non-expert users Abella et al., 1996;
.Boyce and Gorin, 1996 . In the next section, we

discuss the variations in response to a particular
open-ended prompt, in the situation where users are
talking to a human agent.

3. Database

In order to enable experimental evaluation, we
generated a database of 10 K spoken transactions
between customers and human agents. First, both
channels of the dialog were recorded from the agents’

Ž .headset jacks onto a digital audio tape DAT . At the
end of each transaction, a control key was manually

Ž .depressed by the human agent to generate a DTMF
code, serving both as a segmentation marker and a
call-type label. These recordings were then automati-
cally segmented, filtered and downsampled to gener-
ate a stereo speech file for each transaction.
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We then focused on the first customer utterance,
responding to the greeting prompt of ‘‘How may I
help you?’’. These utterances were endpointed, or-
thographically transcribed and then labeled as to
call-type and quality of the speech and channel. We
remark on the distinction between the call-action
labels provided by the agents and by the labelers.
The agent’s DTMF tag comprised an on-the-spot
single label for the entire transaction. The labelers,
however, based their decision on the first customer
utterance only, plus were allowed to select more
than one call-label per utterance. We observed that
84% of the utterances were labeled with a single

Žcall-type, 16% with two e.g., COLLECT and PER-
. Ž .SON-TO-PERSON , then a small remainder 0.6%

with 3 labels. It is possible for the agent-generated
call-type to not match any of the labeler’s, since
sometimes the first utterance is ambiguous, with
things becoming clear only after some dialog. An
issue for future study is the correlation between these
labeling methods, plus an analysis of the reasons for
their mismatches. Since the experiments of Section 5
are based on the first utterances only, those are the
labels which are used for training and testing.

Ž .Several samples of first utterances follow, where
digits are replaced with the symbol ‘‘x’’.

Examples
I need to make a long distance phone call and
charge it to my home phone number
yes how much is it to call the number I just dialed

Fig. 1. Rank frequency distribution of call-types.

Fig. 2. Vocabulary growth in database.

yes where is area code x x x
yes what time is it in area code x x x right now I’m
trying to gauge the time difference
I just I’m trying to get a number from information

Although people’s spoken language varies widely,
most of the time they are asking for one of a
moderate number of services. We selected a subset
of 14 services plus an OTHER class to subsume the
remainder. This distribution is highly skewed, as
illustrated in the rank-frequency plot in Fig. 1.

We now discuss the vocabulary in this database.
Of the 10 K utterances, 8 K are used for training
language models for recognition and understanding,
1 K for testing and the remaining 1 K reserved for
future development. Fig. 2 shows the increase in
vocabulary size accumulated over the 8 K utterances,
with a final value of ;3600 words. Even after 8 K
utterances, the slope of the curve is still significantly
positive. We examined the tail of the lexicon, i.e.,
the last 100 vocabulary words accumulated in the
training utterances. Approximately half were proper

Ž .nouns either people or places , but the other half
Žwere ‘‘regular words’’ e.g., authorized, realized,

.necessary . The out-of-vocabulary rate at the token-
level in the test sentences is 1.6%. At the sentence-

Žlevel, this yields an OOV rate of 30% which is also
observed in the slope of vocabulary growth in Fig.
.2 . Thus, approximately one out of three utterances

contains a word not in the training data. As will be
detailed in Section 4, the test-set perplexity using a
statistical trigram model is ;16.
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Fig. 3. Words per utterance in the initial utterances.

Utterance length varies greatly, from a minimum
Ž .of one word e.g., ‘‘Hello?’’ to 183, with an aver-

age of 18 wordsrutterance. We remark on the defini-
tion of ‘‘first customer utterance’’. The labelers were
instructed that the customer’s first utterance was
completed when the human agent began responding.
Back-channel affirmations from the agent such as
‘‘uh-huh’’ were transcribed and marked, but did not
indicate the end of the customer’s utterance. An
issue for future research is to understand to what
degree such utterances will shorten when people are
talking to a machine rather than a human. The
distribution of these lengths for the 10 K transcrip-
tions is shown in Fig. 3. In that same figure, the
cumulative distribution is also shown. Observe that

Fig. 4. Duration distribution of initial utterances.

almost all of the sentences have length less than 60.
Observe also that the median is approximately equal

Ž .to the mean 18 , although the distribution is highly
skewed. Recall that these utterances are the initial
user response to the greeting prompt.

Similarly, one can histogram the duration of these
initial utterances, as shown in Fig. 4. The average
duration of an utterance is 5.9 sec, so that the speak-
ing rate in this database is approximately 3 words
per second.

4. Algorithms

In this section, we describe the algorithms under-
lying this system and experiments. A key notion is
that for any particular task, it is not necessary to
recognize and understand every word and nuance in
an utterance. That is, to extract semantic information
from spoken language, it suffices to focus on the
salient fragments and combinations thereof. There
are three major issues that we address:
Ø How do we acquire the salient grammar frag-

ments for this task?
Ø How can we recognize these fragments in fluent

speech?
Ø How do we map multiple recognized fragments to

a machine action?
Our technical approach is to avoid hand-crafted
models throughout, focusing on machine learning
methods which automatically learn the structure and
parameters of statistical models for each stage from
data. In Section 4.1 we describe algorithms to auto-
matically acquire salient words, phrases and gram-
mar fragments for a task. We recognize these in
fluent speech via searching the output of a large-

Ž .vocabulary recognizer LVR , whose language model
Ž .is a stochastic finite state machine SFSM with

embedded automatically-acquired phrases. The LVR
and training algorithm for the recognizer language
model are described in Section 4.2. We then formu-
late a call-classification from those multiple recog-
nized salient fragments as described in Section 4.3.

4.1. Salient fragment acquisition

We are interested in constructing machines which
learn to understand and act upon fluently spoken
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input. For any particular task, certain linguistic events
are critical to recognize correctly, others not so. We

Žhave quantified this notion via salience Gorin,
.1995a , which measures the information content of

an event for a task. In previous experiments, salient
words have been exploited to learn the mapping
from unconstrained input to machine action for a

Žvariety of tasks Gertner and Gorin, 1993; Gorin et
al., 1994a,b; Henis et al., 1994; Miller and Gorin,

.1993; Sankar and Gorin, 1993 . In this work, we
Žbuild upon the ideas introduced in Gorin, 1996;

.Gorin et al., 1996 to automatically acquire salient
phrase and grammar fragments for a task, exploiting
both linguistic and extra-linguistic information in the
inference process. In particular, the input to this
inference algorithm is a database of transcribed utter-
ances labeled with associated machine actions. It is
these associated actions which comprise the extra-
linguistic information in this task. While there is a
large literature on automated training of stochastic
language models, such efforts have traditionally ex-
ploited only the language itself, with the goal of

Žwithin-language prediction to improve ASR Jelinek,
.1990 . Learning from language alone is actually a

much harder problem than people are faced with,
who acquire language during the course of interact-
ing with a complex environment. This algorithm,
following that intuition, exploits both language and
extra-linguistic information to infer structure.

4.1.1. Communication and salience
We briefly review the intuitions underlying

Ž .salience, following Gorin 1995a . Consider devices
whose purpose is to understand and act upon fluently
spoken input. The goal of communication in such
systems is to induce the machine to perform some
action or to undergo some internal transformation.
The communication is judged to be successful if the
machine responds appropriately. We have explored

Ž .this paradigm in some detail Gorin, 1995a , in
particular contrasting it with traditional communica-
tion theory, where the goal is to reproduce a signal at
some distant point.

Following this paradigm, we have constructed
several devices which acquire the capability of un-
derstanding language via building statistical associa-
tions between input stimuli and appropriate machine

Žresponses Gertner and Gorin, 1993; Gorin et al.,

1994a; Miller and Gorin, 1993; Sankar and Gorin,
.1993; Henis et al., 1994 . The meaning of an input

Ž . Ž .stimulus e.g., a word can be defined Gorin, 1995a
via its statistical associations to a device’s
inputroutput periphery. This has the attractive prop-
erty of grounding meaning in a device’s experiences
and interactions with its environment. Viewing this
set of associations as a vector enables one to define a
semantic distortion between events as the distance
between their association vectors. The salience of an
event is then defined as its distance from a null-event.

In the case that associations are defined via mu-
tual information between events, then this semantic
distortion can be shown to be equivalent to the
relative entropy between the a posteriori distributions

Žof the output actions conditioned upon the two input
.events . The salience of an event is then the unique

non-negative measure of how much information that
event provides about the random variable of appro-
priate machine responses. The reader is referred to

Ž .the tutorial paper in Gorin, 1995a for a detailed
discussion of these ideas. We remark that there are
related but slightly different salience measures that

Žhave been discussed in Garner and Hemsworth,
.1997 .

4.1.2. Salient phrase fragments
In previous work, we introduced the notion of a

salient word, demonstrating that a rudimentary map-
ping from input to machine action can be constructed
based on only that subset. For example, a salience
analysis of the database for this task yields the
results in Table 1.

We now search the space of phrase fragments,
guided by two criteria. First, within the language
channel, a word pair Õ Õ is considered as a candi-1 2

date unit if it has high mutual information,

<I Õ ,Õ s log P Õ Õ rP Õ . 1Ž . Ž . Ž .Ž .1 2 2 2 1 2

This measure can be composed to recursively
Ž .construct longer units, by computing I f ,Õ where f

is a word-pair or larger fragment. We remark that
this is an approximation to the mutual information of

Ž .the full n-tuple Cover and Thomas, 1991 . We then
introduce an additional between-channel criterion,
which is that a fragment should have high informa-
tion content for the call-action channel. Following
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Table 1
Some salient words

Word Salience

difference 4.04
cost 3.39
rate 3.37
much 3.24
emergency 2.23
misdialed 1.43
wrong 1.37
code 1.36
dialed 1.29
area 1.28
time 1.23
person 1.23
charge 1.22
home 1.13
information 1.11
credit 1.11

Ž . � 4Gorin, 1995a , where f is a fragment and c is thek

set of call-actions, denote its salience by

<S f sÝP c f I f ,c . 2Ž . Ž . Ž .Ž .k k

This salience measure is a mutual information
averaged over the call-actions. It has been shown to
be the unique non-negative measure of how much
information an event in one channel provides for the

Žrandom variable of the second channel Blachman,
.1968 . We perform a breadth-first search on the set

Žof phrases, up to length four an implementation
.artifact , pruning it by these two criteria: one defined

wholly within the language channel, the other de-
fined via the fragment’s extra-linguistic associations.
The within-channel associations are computed via
mutual information andror the r measure of Section
4.2. The extra-linguistic associations are computed

Ž .via the salience of Eq. 2 . The following table
illustrates some salient and background phrase frag-
ments generated by this algorithm. Three attributes
of each fragment are provided. First, the mutual
information between the final word in the fragment
and the preceding subfragment, denoted MI. Second,

Ž < .the peak of the a posteriori distribution P c f ,k

denoted P . Third, the call-type for which thatmax

peak occurs, denoted Call-Type. When the peak is
between 0.5 and 0.9, then the fragment is only
moderately indicative of that call-type and so is
provided within parentheses. When the peak is low

Ž .-0.5 , then it is a background fragment not strongly
associated with any single call-type, so none is pro-
vided.

For example, consider the fragment ‘‘long dis-
tance’’, which has a strong co-occurrence pattern
within the language channel, thus a high mutual

Ž .information MIs7.3 . However, it is not a very
meaningful phrase in the sense that the most likely

Ž .call-type given that phrase in an utterance is a
billing credit query, but only with probability 0.55.
Consider on the other hand an extension of that
phrase, ‘‘made a long distance’’, which both has

Ž .high mutual information MIs7.4 and strongly
connotes a billing credit query with probability 0.93.
A similar discussion can be made for the fragments
‘‘area code’’ and ‘‘the area code for ’’. There are
several background fragments in the list, which have
strong co-occurrence patterns but are not indicative
of any particular call-type, such as ‘‘I would like’’
and ‘‘could you tell me’’. Such fragments are useful
for creating improved models for speech recognition,
as addressed in Section 4.2.

4.1.3. Salient grammar fragments
We now consider a method for combining salient

phrase fragments into a grammar fragment. For ex-
ample, in Table 2, consider the two salient phrases
‘‘a wrong number’’ and ‘‘the wrong number’’.
Clearly, these should not be treated independently,
but rather combined into a single unit. The key idea

Table 2
Salient and background phrase fragments

MI Phrase fragments P Call-Typemax

7.4 made a long distance 0.93 Billing credit
Ž .7.3 long distance 0.55 Billing credit

7.1 I would like 0.24
Ž .6.9 area code 0.65 Area code

6.3 could you tell me 0.37
5.6 the area code for 0.92 Area code
5.3 I’m trying 0.33
5.0 a wrong number 0.98 Billing credit

Ž .4.9 a long distance call 0.62 Billing credit
4.8 the wrong number 0.98 Billing credit
4.4 I’m trying to 0.33

Ž .4.3 long distance call 0.62 Billing credit
4.3 I just made a 0.93 Billing credit
4.1 I’d like to 0.18
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is that there are two similarity measures, one in the
language channel, the other extra-linguistic. Within-
channel, there are various measures to compute simi-

Ž .larity of word-strings e.g., a Levenshtein distance .
We impose the extra-linguistic constraint, however,
that in order for two strings to be clustered, then
their meaning must be similar.

For sake of exposition, we restrict attention to a
single call-type, focusing on salient fragments for
billing credit queries only, based on the transcrip-
tions. Table 3 illustrates the growth of a salient
grammar fragment for this call-type. The first pass of
the algorithm determines the salient words for billing
credits, for which the top choice is ‘‘wrong’’. The
others are ‘‘dialed’’, ‘‘credit’’, ‘‘disconnected’’,
‘‘misdialed’’ and ‘‘cut’’.

The word ‘‘wrong’’ is strongly indicative of
Ž . Ž < .billing credit denoted Cr , with P Cr wrong s0.92.

The coverage is low, however, with only 48% of
those queries containing that word. The local context
of this salient word is then evaluated for those
elements which sharpen the semantics, i.e., increase
the classification rate. The top choice for expanding
local context is then ‘‘wrong number’’, which sharp-
ens the a posteriori probability to 0.98. Similarly,
other left and right contexts are added, leading to the
grammar fragment

F wrongŽ .
< < < <s a the was wrong number eos call ,Ž . Ž .

<where eos is the end-of-sentence marker, indicates
Ž .disjunction or and concatenation indicates conjunc-

tion in order. The grammar fragment with the kernel
Ž .‘‘wrong’’ is then denoted F wrong . At this point,

Table 3
Growth of a salient grammar fragment for distinguishing billing
credit queries

Prob correct Coverage Fragment
Ž < . Ž < .P Cr G P G Cr G

0.92 0.48 wrong
0.98 0.41 wrong number

Ž < < .0.95 0.45 wrong number eos call
Ž < < . Ž < < .0.97 0.42 a the was wrong number eos call
Ž . < Ž .0.95 0.50 F wrong F dialed
Ž . < Ž . < Ž .0.95 0.57 F wrong F dialed F credit

< Ž .0.95 0.59 — F disconnected
< Ž . < Ž .0.95 0.64 — F misdialed F cut off

the semantics is quite sharp, with the a posteriori
probability being 0.97, although the coverage has
dropped to 0.42. This process is then repeated to
construct fragments surrounding the other salient

Ž .words for this call-type, denoted F dialed , etc. As
this expression becomes too long to fit in the table,
we indicate the fragment from the previous row by
‘‘—’’. By incrementally adding these fragments, the
coverage is increased to 0.64 while maintaining a
high classification rate of 0.95.

Again for the sake of exposition, let’s consider
the two-class problem of distinguishing billing credit
queries from the others, still restricting attention to

Žtranscriptions only. In Section 5, we will report on a
.full multi-class experiment from speech. For any

particular salience threshold, a particular set of gram-
mar fragments will be generated. A most rudimen-
tary decision rule would be based simply whether
one of these fragments matches a substring of the
recognizer output. For example, the following are
some illustrative correct detections of a billing credit
query, based on such a matching scheme. The sub-
string which matches a grammar fragment is high-
lighted by capitalization plus connection with under-
scores. Digit sequences are denoted by ‘‘xxx’’.

Correct detections
i placed a call and i GOT_A_WRONG_NUMBER
earlier this afternoon.
yes i MISDIALED a number.
I_WAS_CUT_OFF when trying to call this number.
I_WAS_DIALING 1 xxx xxx xxxx and i got some-
one else
yes I_JUST_DIALED AN_INCORRECT_NUM-
BER
yes I would like TO_GET_CREDIT_FOR a number
I called

There are two types of errors that occur in such a
classifier. First is a false detection, i.e., classifying a
call as a billing credit when it was not. Second is a
missed detection, i.e., a billing credit query that was
classified as other. The operational costs of such
errors can be quite different. For example, a missed
detection in a call-router leads to a missed opportu-
nity for automation, while a false detection leads to
an incorrect routing. Several examples of such errors
are shown below.
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False detections
yes i have a number here and i don’t know if it’s
A_WRONG_NUMBER
I was trying to get xxx xxx xxxx and it said it
WAS_DISCONNECTED
Missed detections
I am trying to call wooster and the number I have
rings to a different number
I’m going to blame this one on my wife I misread
her handwriting
I’m dialing xxx xxx xxxx and I keep getting bells
and things like that

4.2. Recognizing fragments in speech

In this section, we describe our methodology for
recognizing salient fragments in fluent speech. Tradi-
tionally, the problem of spotting words or fragments
in speech has been approached via constructing mod-
els of the those fragments plus a background model
to subsume their complement. When there are a
small number of fragments, it was sufficient to de-
scribe the background via a low-level filler model
Ž .Wilpon et al., 1990 . As the problem size increases,
however, such methods do not scale well. Intuition
tells us that the best background model is the rest of
the language, leading one to apply large vocabulary
recognition and then search the ASR output for the
salient fragments. For example, experiments along
these lines for keyword spotting using LVR were

Žreported in Peskin, 1993; McDonough and Gish,
.1994 .

The ASR engine in our experiments is a research
Žversion of AT&T’s Watson speech recognizer Sharp

.et al., 1997 . We use an off-the-shelf acoustic model
trained on a separate database of telephone-quality

Ž .read-speech based on the methods in Ljolje, 1994
with shared de-correlation matrices across distribu-
tions. The lexicon is based on the 8 K training set of
Section 2, with a single phoneme-based dictionary

Ž .pronunciation of each word Riley et al., 1995b .
The language model, pronunciation models and full-
context acoustic phone models are composed on-the-

Ž .fly via the methods of Riley et al. 1995a .
The recognizer is constrained by a stochastic lan-

guage model which approximates an n-gram model
on variable-length phrase units. These phrase units
are automatically acquired from the database based

on their utility for minimizing the entropy of the
training corpus. At this point, these phrases are
acquired separately and according to a different cri-
terion than the salient fragments of the previous
subsection. It is a subject for future research to
integrate these two methods, in order to optimize the
recognizer to maximize the understanding rate.

4.2.1. Language modeling
For language modeling to constrain the recog-

nizer, we automatically train a stochastic finite state
grammar represented via a Variable Ngram Stochas-

Ž . Ž .tic Automaton VNSA Riccardi et al., 1996 . A
VNSA is a non-deterministic automaton that allows
for parsing any possible sequence of words drawn
from a given vocabulary. Moreover, it implements a
backoff mechanism to compute the probability of
unseen word-tuples. The stochastic automaton is au-
tomatically generated from the training corpus ac-

Žcording to the algorithm presented in Riccardi et al.,
.1996 . The order of a VNSA network is the maxi-

mum number of words that can be used as left
context. That is, if the order is n and w denotes thej

jth word in an utterance, then it utilizes the condi-
Ž < .tional probabilities Prob w w , . . . ,w . VN-i iynq1 iy1

SAs have been used to approximate standard n-gram
language models yielding similar performance to

Žstandard bigram and trigram models Riccardi et al.,
.1996 . Since they are represented as stochastic finite

state machines, their incorporation into a one-pass
Viterbi speech decoder is straightforward and effi-
cient. Furthermore, they can be exploited in a cas-
cade of transducer compositions for speech process-
ing to include intra and inter-word phonotactic con-

Ž .straints Pereira and Riley, 1997 .

4.2.2. Automatically acquired phrases
Traditionally, n-gram language models for speech

recognition assume words as the basic lexical unit.
However, there are several motivations for choosing
longer units for language modeling. First, not all

Žlanguages have a predefined word unit e.g., Chi-
. Ž .nese . Second, many word tuples phrases are

strongly recurrent in the language and can be thought
as a single lexical entry, e.g., ‘‘area code’’, ‘‘I
would like to’’ or ‘‘New Jersey’’. Third, for any
model of a fixed order, we can selectively enhance
the conditional probabilities by using variable length
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units to capture long spanning dependencies. In pre-
Ž .vious work Riccardi et al., 1996 , the effectiveness

of incorporating manually selected phrases in a
VNSA has been shown.

Ž .In this paper, building upon Riccardi et al., 1997 ,
we describe an algorithm for automatically generat-
ing and selecting such variable length units based on

Ž .minimization of the language perplexity PP T on a
training corpus T. We remark that while there has
been other research into automatically acquiring en-

Žtropy-reducing phrases Giachin, 1995; Matsumura
.and Matsunaga, 1995; Masataki and Sagisaka, 1996 ,

this work differs significantly in the language model
components and optimization parameters.

The phrase acquisition method is an iterative pro-
Ž .cess which converges to a local minimum of PP T ,

as illustrated in Fig. 5. In particular, given a fixed
model order n and a training corpus T , the algorithm
proceeds as follows.

4.2.3. Re-estimation algorithm for the ASR language
model

Parameters: Let K be the number of candidates
generated at each iteration, and M be the number
of iterations.
Initialization: Let T be the initial training corpus11

T , and let l be the language model of order n11

trained from that corpus.

Fig. 5. Phrase selection via entropy minimization.

Iterate for ms1 to M,
Generate a ranked set of K candidate phrases
from symbol pairs in the lexicon of training set

Ž .T , denoting these via x_y . The ranking ism1 k

via the correlation measure r described below.
For each candidate phrase, ks1 to K

Filter the current training corpus T bym ,ky1

replacing each occurrence of the phrase with
Ž .the phrase unit x_y . Denote this new fil-k

tered set by T .m k
Ž .Train a new language model still of order n

from T , denoted l .m k m k

Test whether adding this candidate phrase
decreases perplexity, i.e., w hether

Ž . Ž .PP l ,T - PP l ,T . If so,m k m k m ,ky1 m ,ky1

then continue, else reject this candidate phrase
via setting T sT .m k m ,ky1

next k
next m
Train a final language model from the filtered
corpus T plus the original T , with lexiconM K

comprising all original words plus the acquired
phrases.

The algorithm is initialized with the training cor-
pus T , with the initial language model l corre-11

sponding to a stochastic n-gram model on words.
For each iteration, the first step is to generate and

Ž .rank candidate symbol-pairs x, y based on a corre-
lation coefficient

r x , y sP x , y r P x qP y , 3Ž . Ž . Ž . Ž . Ž .
Ž .where P x denotes the probability of the event x

Ž .and P x, y denotes the probability of the symbols x
and y occurring sequentially. At the first iteration, x
and y are both words, in subsequent iterations they

Ž .are potentially larger units. Observe that 0(r x, y
(0.5. We remark that this correlation measure has
advantages over mutual information with respect to

Žease of scaling and thresholding Riccardi et al.,
.1997 .

Ž .Thus, a phrase x_y is selected only if P x, y ;
Ž . Ž . Ž Ž < . .P x ;P y i.e., P y x ;1 and the training set

perplexity is decreased by incorporating this larger
lexical unit into the model. After the M iterations
are completed, there is the final step of retraining the
language model from the final filtered corpus TM K

plus the original T. This preserves the granularity of
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the original lexicon, generating alternate paths
through the SFSM comprising both the new phrases
plus their original word sequences. That is, if the
words ‘‘long’’ and ‘‘distance’’ only occur together
in the corpus leading to the acquisition of the phrase
‘‘long_distance’’, this final step preserves the possi-
bility of the words occurring separately in some test
utterance.

4.3. Call classification

We make a decision as to which of the 15 call-
types to classify an utterance in a particularly
straightforward manner. The speech recognizer de-
scribed in Section 4.2 is applied to an utterance,
producing a single best word recognition output.
This ASR output is then searched for occurrences of
the salient phrase fragments described in Section 4.1.
In case of fragment overlap, some parsing is re-
quired. The parsing algorithm is a simple one, select-
ing longer fragments over shorter ones, then proceed-
ing left to right in the utterance. This yields a
transduction from the utterance s to a sequence of
associated call-types. To each of these fragments fi

is associated the peak value and location of the a
posteriori distribution,

<p smax P C f , 4Ž .Ž .i k k i

<k sarg max P C f . 5Ž .Ž .i k k i

Thus, for each utterance s we have a sequence
� 4f ,k , p . The decision rule is to select the call-typei i i

Ž .of the fragment with maximum p , i.e., select C si K

where

i s sarg max p , 6Ž . Ž .i i

K s sk . 7Ž . Ž .iŽ s.

If this overall peak is less than some threshold, P ,T

then the utterance is rejected and classified as other,
i.e., if p -P .iŽ s. T

Several examples are given below, listing the
transcription then ASR output using the phrase-bi-
gram grammar of Section 4.2 with the detected
fragments highlighted via capitalization and brack-
eted via underscores. The transduction into call-types
with associated scores is then given, with the peak
fragment indicated via underlining.

Examples 1–4 below demonstrate robustness of
the salient fragments in the presence of recognition
errors. The fifth example illustrates an ASR error
which yielded a salient fragment, where ‘‘stick it on

Žmy’’ was misrecognized as ‘‘speak on my’’ observ-
ing that stick was not in the training data, thus is an

.out-of-vocabulary word . The final example involves
a user who thought they were talking to a hardware
store. In this case, the recognizer performs poorly
because of a large number of out-of-vocabulary
words. However, the call-classification is indeed cor-
rect – leading to transfer to a human agent.

Examples of call classification:

1. Transcr: yes I just made a wrong tele-
phone number

ASR q parse: not help me yes I_JUST_
MADE_A long telephone num-
ber
� 4Transdqdecision: CREDIT 0.87

2. Transcr: hello operator I get somebody
to speak spanish

ASRqparse: motel room you get somebody
speak SPANISH
� 4Transdqdecision: ATT SERVICE 0.64

3. Transcr: hi can I have the area code for
saint paul minnesota

ASRqparse: hi can THE_AREA_CODE_
FOR austin for minnesota
� 4Transdqdecision: AREA CODE 1.00

4. Transcr: yes I wanted to charge a call to
my business phone

ASRqparse: yes I_WANNA_CHARGE call
to distance phone
� 4Transdqdecision: THIRD NUMBER 0.75

5. Transcr: hi I like to stick it on my
calling card please

ASR q parse: hi I’D_LIKE_TO_SPEAK
ON_MY_CALLING_CARD
please
� 4Transd q decision: PERSON_PERSON 0.78

� 4CALLING CARD 0.96
6. Transcr: I’m trying to find out a particu-

lar staple which fits one of your
guns or a your desk staplers
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ASR q parse: I’m trying TO_ FIND_OUT
they’Õe CHECKED this is still
call which six one of your
thompson area state for ask stay
with the
� 4 � 4Transdqdecision: RATE 0.25 OTHER 0.86

5. Experiment results

The database of Section 3 was divided into 8 K
training and 1 K test utterances. The remainder of the
10 K database has been reserved for future validation
experiments. Salient phrase fragments were automat-
ically generated from the training transcriptions and
associated call-types via the methods of Section 4.1.
In particular, the length of these fragments was
restricted to four or less and to have training-set
frequency of five or greater. An initial filtering was
imposed so that the peak of the a posteriori distribu-
tion for a fragment is 0.6 or greater. We have

Ž .observed in previous experiments Gorin, 1995a that
the numerical value of salience is influenced by the
fragment frequency, as is typical for information-the-
oretic measures. Fig. 6 shows a scatter plot of salience

Ž .versus within-channel information content i f s
w Ž .xylog P f . It is thus advantageous to introduce a2

frequency-tilted salience threshold of the form

sal f 0a i f qb . 8Ž . Ž . Ž .
The values of a and b can be varied and evalu-

ated empirically. In the scatter plot of Fig. 6, two

Fig. 6. Salience versus information for phrase fragments.

Table 4
Length of distribution of salient phrases

Length of salient fragment 1 2 3 4
Relative frequency 0.04 0.18 0.43 0.35

thresholds are also shown: the vertical line for the
frequency threshold, the other for the frequency-tilted
salience threshold. In this experiment, we select the
values of a and b via a statistical significance test.
For any particular fragment, we evaluate the null
hypothesis that its observed a posteriori distribution
Ž < .P C f occurs as a random sample of the priork

Ž .distribution P C . Computed via a multinomial dis-k

tribution, a significance level of 1% is imposed,
yielding the tilted salience threshold shown in Fig. 6.
This reduces the total number of phrase fragments by
about 20%. There are approximately 3 K such salient
fragments, with length distributed as in Table 4.

The speech recognizer is as described in Section
4.2. The VNSA language model is trained via 20
iterations of the algorithm in Section 4.2, with 50
candidates per iteration. For the phrase-bigram
model, this yields 783 phrases in addition to the
original 3.6 K word lexicon. The length of these
fragments varies between 2 and 16, distributed as
shown in Table 5.

We first compare word accuracy and perplexity as
a function of the language model. Table 6 shows the

Žword accuracy defined as probability of correct
.detection minus probability of insertion as the lan-

guage model is varied. Recall that phrase units com-
prise both the original lexicon of words plus vari-
able-length phrases induced by entropy minimiza-
tion. Bigrams and trigrams are 2nd and 3rd order
models respectively on whichever lexicon is speci-
fied. Fig. 7 shows the test set perplexity as a function
of language model units and order. We observe that
in both of these within-language performance mea-
sures, phrase-bigrams fall between word-bigrams and
word-trigrams, but with the computation and mem-
ory requirements of word-bigrams.

Table 5
Length distribution of VNSA phrase fragemnts

Length of VNSA fragment 2–3 4–5 6–7 8–16
Relative frequency 0.88 0.07 0.03 0.02
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Table 6
Word accuracy versus language model

Unit type Bigram Trigram

Words 49.5% 52.7%
Wordsqphrases 50.5% 52.7%

The ASR output is then searched for salient frag-
ments, as described in Section 4.3. If no fragments
are found, then the utterance is rejected and classi-
fied as other. The number of salient fragments per
utterance found in the 1 K test set varies between
zero and 11, distributed as shown in Table 7.

5.1. Performance eÕaluation

The salient fragments recognized in an utterance
are then rank-ordered, as was described in Section
4.3. We now measure the performance on the test
data in terms of true classification rate and false
rejection rate. For each test utterance, the decision
between accept and reject is based on the top-ranked
call type. If this is other, or if the associated proba-
bility fails to reach a designated threshold, then the
call is rejected. Otherwise, the call is accepted and

Žthe accuracy of the attempted classification at rank
.1 and rank 2 is determined using the label set for

that call. The desired goal for calls labeled ‘‘other’’
is that they be rejected. The false rejection rate is
the proportion of calls not labeled other that are
rejected. At rank 1, the true classification rate is the

Fig. 7. Test set perplexity versus language model.

Table 7
Number of salient fragments recognized in an utterance

Salient fragments 0 1 2 3 4 5 6–11
per utterance
Relative frequency 0.14 0.25 0.28 0.18 0.07 0.04 0.04

proportion of accepted calls for which the top-ranked
call type is present in the label set.

At rank 2, the true classification rate is essentially
the proportion of calls for which either the first or
second highest ranked call type is present in the label
set. However, for a small number of calls the label
other is paired with another call type, and a rejection
at rank 2 is then counted as a correct outcome for
such a call. We include such cases in the true
classification rate at rank 2 because at that point the
call has been accepted for handling by the dialog
system and contributes to the measure of success
appropriate to it.

With these definitions we can plot the ROC curve
of true classification rate against false rejection rate.
Let’s introduce the following notation and defini-
tions for a particular utterance:

ŽØ C is the list of call-type labels recall that this is
.typically a single label ;

ˆØ A denotes the decision to accept the call at rank1

1;
ˆ ˆØ R and R denote the decision to reject the call at1 2

rank 1 and rank 2 respectively;
ˆ ˆØ C and C denote the rank 1 and rank 2 call types1 2

from the recognized fragments.
We then measure, over the set of 1 K test utterances,
the following probabilities:

ˆ <False rejection ratesP R otherfC , 9Ž .Ž .1

ˆ ˆ<True classification rate rank 1 sP C gC A ,Ž . ž /1 1

10Ž .

ˆTrue classification rate rank 2 sP C gCŽ . Ž .ž 1

ˆ ˆ ˆ<j C gC j R lothergC A . 11Ž .Ž . Ž . /2 2 1

We generate a performance curve by varying the
rejection threshold from 0.6 to 0.95. Fig. 8 shows the
rank 1 performance curves for several different ASR
language models. As a baseline for comparison, the

Žperformance on transcribed output i.e., error-free
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Fig. 8. Call-classification performance for varying ASR language
models.

.ASR is also shown. It is interesting to note that
call-classification performance is significantly higher
than word accuracy – confirming the intuition that
some events are crucial to recognize for a task,
others not so. It is also worthwhile noting that while
the phrase-bigram language model for ASR performs
worse than word-trigrams with respect to word accu-
racy, it performs better with respect to call-classifica-
tion rate. This reinforces the intuition that optimizing
recognition for understanding is an important re-
search issue.

We now compute both rank 1 and rank 2 perfor-
mance using the phrase-bigram model for ASR, with
performance shown in Fig. 9.

Fig. 9. Rank 1 and rank 2 performance.

6. Conclusions

We have described progress towards a natural
spoken dialog system for automated services. By
natural, we mean that the machine understands and
acts upon what people actually say, in contrast to
what one would like them to say. A first stage in this
system is call-classification, i.e., routing a caller
depending on the meaning of their fluently spoken
response to ‘‘How may I help you?’’ We have
proposed algorithms for automatically acquiring lan-
guage models for both recognition and understand-
ing, experimentally evaluating these methods on a
database of 10 K utterances. These experiments have
shown that understanding rate is significantly greater
than recognition rate. This confirms the intuition that
it is not necessary to recognize and understand every
nuance of the speech, but only those fragments
which are salient for the task.
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