
S
emantics deals with the organization of meanings and the relations between
sensory signs or symbols and what they denote or mean [29]. Computational
semantics performs a conceptualization of the world using computational
processes for composing a meaning representation structure from available
signs and their features present, for example, in words and sentences. Spoken

language understanding (SLU) is the interpretation of signs conveyed by a speech signal.
SLU and natural language understanding (NLU) share the goal of obtaining a conceptual
representation of natural language sentences. Specific to SLU is the fact that signs to be
used for interpretation are coded into signals along with other information such as speaker
identity. Furthermore, spoken sentences often do not follow the grammar of a language;
they exhibit self-corrections, hesitations, repetitions, and other irregular phenomena. SLU
systems contain an automatic speech recognition (ASR) component and must be robust to
noise due to the spontaneous nature of spoken language and the errors introduced by ASR.
Moreover, ASR components output a stream of words with no structure information like
punctuation and sentence boundaries. Therefore, SLU systems cannot rely on such mark-
ers and must perform text segmentation and understanding at the same time.

Obtaining meaning from speech is a complex process and many different approaches
and models have been proposed. Systems developed in the 1970s and the 1980s mostly
performed syntactic analysis on the best sequence of words hypothesized by an ASR sys-
tem and used nonprobabilistic rules for mapping syntactic structures into semantic
ones expressed as logic formulas. An interesting discussion on computer structures for
semantic representations considered in this period can be found in [29]. Meaning repre-
sentation and approaches for obtaining these representations from words are discussed
in this article. Basic related problems are reviewed in [15]. In the 1990s, the need
emerged for testing SLU processes on large corpora that could also be used for automat-
ically estimating some model parameters. Probabilistic finite-state interpretation mod-
els and grammars were also introduced for dealing with ambiguities introduced by
model imprecision. Systems based on these approaches are discussed in this article and
are also reviewed in chapter 14 of [6]. 

Some other approaches transform signals directly into basic semantic constituents to
be further composed into semantic structures. This integration of the ASR and SLU
processes, which is discussed in this article, generates multiple SLU hypotheses to be fur-
ther validated using constraints imposed by the context in which a sentence is interpreted. 
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The level of complexity needed in order to represent the
meaning of a spoken utterance depends mainly on the applica-
tion targeted. There are three main application domains for
SLU: spoken dialog systems, speech information retrieval (or
speech mining), and speech translation.

We will not address speech translation in this article as the
SLU models needed are heavily dependent on the translation
method used, and this is out of the scope of this article. Speech
mining applications are mostly focused on the retrieval of seman-
tic information such as entities (named entities or application-
dependent concepts), themes, and opinions. For this purpose,
most of the time a flat semantic representation, like an
attribute/value sequence, is used to represent the interpretation of
a spoken utterance. Spoken dialog systems need advanced SLU
models in order to implement dialog applications that go beyond
call routing or form filling. For example, the European project
LUNA (www.ist-luna.eu) defines three levels of complexity for dia-
log applications. The first level includes the translation process
from words into basic conceptual constituents (generation of
semantic concepts). This level of detail is sufficient for applica-
tions such as call routing and utterance classification with a map-
ping to disjoint categories. The second level performs semantic
composition on basic constituents for applications like call rout-
ing with utterance characterization (finer-grain comprehension),
question/answering, and inquiry qualification. At the third level, a
broad context is taken into account for context-sensitive valida-
tion in complex spoken dialog applications and inquiry qualifica-
tion considering an utterance as a set of sub-utterances and the
interpretation of one sub-utterance being context sensitive to the
others. The different semantic models and interpretation process-
es to be presented in this article will all be focused on dialog appli-
cations belonging to one of these levels.

Applications are effective if the systems have self-diagnosis
capabilities in order to commit transactions or perform other
actions. Confidence in SLU will also be discussed. Speech data
that are not interpreted with high confidence can be proposed
for manual annotation and used for successive model refine-
ment. Active learning for this purpose is also discussed in this
article.

COMPUTER REPRESENTATIONS OF MEANING
A meaning representation language (MRL) has its own syntax
and semantics and should follow a representation model coher-
ent with a semantic theory, taking into account intension and
extension relations, reasoning, composition of semantic con-
stituents into structures, and procedures for relating them to
signs. Designing a meaning representation that can capture the
rich expressivity of spoken language is difficult. Therefore, in
order to build practical systems, meaning representations tend to
be crafted based on the desired capabilities of each application. 

The semantic knowledge of an application is stored in a
knowledge base. A convenient approach to reasoning about
semantic knowledge is to represent it as a set of logic formulas.
Formulas contain variables that are bound by constants and
may be typed. First-order or higher-order logics can be used.

Concepts carried by signs are asserted by an interpretation
process. New assertions can be obtained from asserted concepts
by an inference process. 

Task-dependent representations constrain the portability of a
system to new domains and applications. Recently, there have
been two new semantic representation frameworks that are
widely accepted: FrameNet and PropBank.

Computer semantics has to be based on models that repre-
sent knowledge with schemata including procedures for hypoth-
esizing semantic entities by applying relations between signs
and meaning. For this purpose, classes of objects, called frames,
have been introduced [3]. Frames are structures identified by a
name and a set of role-value pairs called slots. Procedures can be
attached to slots. A frame can be seen as an organization of con-
cepts. Many deep semantic representations are based on deep
case n-ary relations between concepts as proposed by Fillmore
and used in  the FrameNet project [3]. Deep case systems have
very few cases, with each one representing a basic semantic con-
straint. Frames used in semantics are inspired by case struc-
tures [7] and have been considered as cognitive structures. In
[14], a theory is presented in which semantic structures are
obtained by composition functions. Thematic roles are part of
the structures. FrameNet has the goal of documenting the syn-
tactic realization of arguments of the predicates of the general
English lexicon by annotating a corpus with semantic roles. The
project is focused on task-independent semantic frames, which
are defined as a schematic representation of situations involving
various participants. First, frames and their participant frame
elements are designed, and then example sentences for the
frame from the British National Corpus are manually annotated. 

Consider the example sentence The customer accepts the
contract. In order to represent intension, an action expressed by
a verb “accept” is represented by a frame as follows:

{accept
is_a : verb 
agent [human.....] 
theme [.................]
........................
Other roles.......... [.............]}

A specific MRL semantic defines this frame as a prototype
based on which many instances can be obtained. In these
instances, values are associated to roles. Between brackets are
represented constraints for the values of each role. Specific rep-
resentations can be attached to slots such as mass terms, adver-
bial modification, probabilistic information, degree of certainty,
time, and tense. Finding values for roles can be seen as a slot-
filling process performed by attached procedures.

PropBank is another project that adds a layer of predicate
argument information or semantic role labels to the syntactic
structures of the Penn Treebank. Semantic role labels indicate
the role of each argument for all target predicates (verbs) in a
sentence. For instance, [18] presents a method to bootstrap
SLU systems based on PropBank parses. Predicate/argument
sets contribute to form a frame when the resulting structure
has a specific meaning. For some applications, the only useful
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composition is a frame representing dialog acts whose compo-
nents are semantic constituents. Application goals can be rep-
resented by frames that constrain the aggregation of
predicate/argument pairs to specify system actions.

FROM WORD SEQUENCES TO 
SEMANTIC INTERPRETATION
Semantic interpretation is based on the application of relations
between signs and meaning. The process can be seen as a transla-
tion leading to sentences in MRL.
An important question concerns
the definition of the signs. If it is
assumed that signs are words,
then the language to be translated
is natural language. Some SLU
systems are based on this assump-
tion. In this case, interpretation of
spoken language is similar to interpretation of written language.
A semantic analyzer may interact with a syntactic analyzer to
produce semantic representations acceptable to a logical deduc-
tive system. This is motivated by arguments that each major syn-
tactic constituent of a sentence maps into a conceptual
constituent, but the inverse is not true. 

SEMANTIC AND SYNTACTIC ANALYSIS
Syntactic analysis can be performed by a parser that produces a
parse tree for a sentence and semantic labels, like predicate and
arguments, which can be attached to components of the parse
tree. For example, parsing the sentence The customer accepts the
contract results in the parse tree shown in Figure 1 to which
semantic labels are attached.

There are conceptually different approaches for associating
semantic labels to nonterminal symbols. 

Feature structures may be used to provide constraints on
grammatical rules and rule out inadmissible combinations; for
example, ensuring agreement between the person and number
features of the subject noun phrase (NP) and the verb phrase (VP).
In the following sentence, for example, the syntactic features of
who as opposed to which produce a different syntactic analysis: 

List all employees of the companies who/which are based in
the city center.

1) list employees based in the city center 
2) list employees of those companies that are based in the
city center. 
An association of semantic building formulas with syntactic

analysis is proposed in categorical grammars (reviewed in [6])
conceived for obtaining a surface semantic representation. The
syntax of a language is seen as algebra and grammatical cate-
gories are seen as functions. Lexical representations have associ-
ated a syntactic pattern that suggests possible continuations of

the syntactic analysis and the
semantic expression to be generat-
ed. Semantic knowledge is associ-
ated in this case with lexical
entries, and logic formulas are
composed by actions performed
during parsing. A detailed discus-
sion of rules for deriving semantic

interpretations from syntactic parse trees can be found in [1]. 

DEEP SEMANTIC PROCESSING
A deeper semantic analysis may also require contextual informa-
tion to recognize and distinguish between different user inten-
tions. In the following example (from [2]), the query:

Can we remove the people by helicopter?
uttered in the context of a disaster management scenario

could represent two possible speaker intentions: 
1) a request to change the plan (i.e., can we use a helicopter
rather than a truck?)
2) a question about feasibility (i.e., is it possible to use a
helicopter?). 
Further intentions are possible at the problem-solving level;

for example, 
1) to introduce a new goal
2) to elaborate or extend a solution to the current problem
3) to suggest a modification to the current solution (for
example, moving them by truck).
Determining these intentions requires reasoning about the

task and current context to identify the most plausible interpre-
tation. The semantic representation used in [2] is a logical form
language that provides a domain-independent, unscoped seman-
tic representation of the utterance that can be linked to domain-
specific knowledge to support advanced discourse processing
that takes context into account.

One problem with richer semantic representations is that,
while they have high precision and support deeper understand-
ing, they are usually hand-crafted and suffer from a lack of
robustness and efficiency.

Recently a number of resources have become available that
support developers of advanced grammatical formalisms. GF
Resource Grammar Library [5] enables developers to write
grammars using reusable software libraries. The Regulus plat-
form [23] is a development environment for building grammar-
based speech applications, supporting the compilation of typed
unification grammars into parsers, generators, language mod-
els, and recognition packages.[FIG1] Parse tree with attached semantic labels.
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TASK-DEPENDENT SLU MODELS
Many problems of automatic interpretation in SLU systems arise
from the fact that many sentences are ungrammatical, the ASR
components make errors in hypothesizing words, and gram-
mars have limited coverage. These considerations suggest that it
is worth considering specific but more robust models for each
conceptual constituent.

In the early 1990s, the Defense Advanced Research Projects
Agency (DARPA)-funded Airline Travel Information System (ATIS)
project resulted in a number of
task-dependent SLU systems. Data
were collected with system-user
inquiries about flight information;
for example, I want to fly to
Boston from New York next week
or Does this flight serve meals?
ATIS provided a benchmark for
many grammar-based, statistical, and hybrid spoken-language
understanding systems. The frame elements typically contain
information about the departure and arrival cities and date.

The linguistic analyzer TINA [26] was proposed by MIT. It
is written as a set of probabilistic context-free rewrite rules
with constraints, which is converted automatically at run
time to a network form in which each node represents a syn-
tactic or semantic category. The probabilities associated with
rules are calculated from training data and serve to constrain
search during recognition (without them, all possible parses
would have to be considered). A robust matcher was obtained
by modifying the grammar to allow partial parses. In robust
mode, the parser proceeds left to right as usual, but an
exhaustive set of possible parses is generated starting at each
word of the utterance.

PROBABILISTIC SLU MODELS
In addition to partial parsing and back-off to special matchers
when parsing fails (a review can be found in [6] for the ATIS

project), it was found useful to construct devices for represent-
ing knowledge whose imprecision is characterized by probability
distributions. It was also found useful to obtain model parame-
ters by automatic learning using manually annotated corpora.
This works as long as manual annotation is easy, reliable, and of
sufficiently wide coverage. 

The AT&T Chronus SLU system [20] is based on the noisy
channel paradigm, commonly used for formalizing the general
speech recognition problem. In this system, semantic knowl-

edge is represented by a Markov
model in which observations are
words w, using one state for each
semantic concept.

A tree-structured meaning
representation was proposed in
the Hidden Understanding
Model (HUM) [16]. An example

of this representation is shown in Figure 2. Semantic con-
stituents corresponding to partial parse trees are used as
names for nonterminal symbols of a stochastic context-free
grammar (SCFG). The semantic language model employs
tree-structured meaning representations: concepts are rep-
resented as nodes in a tree, with subconcepts represented
as child nodes. Interpretation is guided by a strategy repre-
sented by a stochastic decision tree. Each terminal node is
the parent of a word or of a sequence of words. It is worth
noticing that full parsing of a sentence requires the sen-
tence bounds to be known.

AT&T Chronus and BBN HUM systems are reviewed in
detail in [28] where a hybrid approach with Markov models
and SCFG is also described. In this approach, a manually built
CFG is exploited for embedding domain-specific and domain-
independent knowledge, like a city name list and a date gram-
mar. The CFG rules can be populated with database entries or
prebuilt in a grammar library for domain-independent con-
cepts (e.g., date and time).

[FIG2] An example hierarchical semantic representation for the ATIS domain (from [16]).
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In the Chanel system, first the general entities, such as city
or airport names and dates, are marked. Then their roles are
determined using semantic classification trees (SCTs) automati-
cally learned using the training data. A simplified example deci-
sion tree is shown in Figure 3 for assigning the role of a city.
Frame instances are composed by rules from role hypotheses.
More details can be found in [6, chap. 14]. 

At Cambridge University [13], an approach based on SCFGs
was proposed that does not require fully annotated data for
training. The proposed solution considers a hidden vector state
(HVS) model. Each state encodes the tree context in a vector 
(or a stack). Then the state transition for each emitted word is

factored into n stack pop operations and one push operation for
the word itself. Therefore, the model can only represent right-
branching context-free grammars. The transition probabilities
for each n are learned from the corpus or from the grammar
templates. The stack depth and number of pop operations n are
restricted for efficiency reasons. 

The use of stochastic semantic grammars at Microsoft is
reviewed in [28].

More recently, combined statistical models of syntax and
semantics have been proposed. Figure 4 shows a syntactic-seman-
tic tree for the sentence List the TWA flights from Washington to
Philadelphia. While the parse has been extracted from a generic
English parser, its subtrees have been marked semi-automatically
with features relevant to the attribute OriginCity (full line) and
contextual (dashed line) to the sentence  [17] . With this
approach, semantic hypotheses are dynamically attached to non-
terminal symbols of a general-purpose syntactic grammar, rather
than having a semantic grammar with static rules defining possi-
ble rewriting of semantic nonterminal symbols.

In [19] statistical translation models are used to translate a
source sentence S into a target MRL T by maximizing the prob-
ability P(T |S ). The central task in training is to determine cor-
relations between groups of words in one language and MRL
entities. The source channel fails to capture such correlations,
so a model has been built to directly compute the posterior
probability P(T |S ). The use of discriminative models for this
purpose is described in [30].

CLASSIFICATION MODELS FOR SLU 
Robust spoken language understanding has been addressed in the
context of dialog utterance or user intent classification.
Pioneering work was done in AT&T’s How May I Help You? [8],
where the users’ conversational spoken utterances are classified

into a number of predefined intents. The
approach taken uses a discriminative clas-
sifier (boosting or SVM) with the word n-
grams and task-specific named entities
appearing in the utterance as features [9].
Combinations of human-crafted knowl-
edge and the results of automatic learn-
ing of semantic knowledge are proposed
in [25]. The concurrent use of SCT, boost-
ing, and SVM classifiers is proposed in
[22] to increase classification robustness.

CORPUS COLLECTION AND
COMPARISON OF DIFFERENT
APPROACHES
Regardless of the method chosen for per-
forming the translation process from a
speech signal to a semantic interpretation,
corpora are needed to perform system
development and evaluation. For manually
defined rule-based systems, corpora are
useful for writing the rules through the

[FIG3] Example of an SCT for the ATIS domain.
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study of speech samples and by checking their coverage. For cor-
pus-based methods, corpora with semantic annotations are used to
train models. For evaluation purposes both approaches need corpo-
ra with manual semantic annotations as references.

The availability of speech corpora for SLU is a major issue
due to the difficulties involved in building a semantic model
as well as the costs of collecting
and manually annotating a
speech corpus with the semantic
information required for such a
model.

The corpora linked to a specific
application are generally not pub-
licly available. However, two notable
examples of publicly available semantically annotated dialog
speech corpora are the ATIS corpus mentioned previously and the
French MEDIA corpus, a spoken dialog corpus about tourist
enquiries collected using the Wizard of Oz method.
Description, discussion, experiments, and results can be found
in [6, chapter 14] for the first corpus and in [30] for the second
corpus. There is not a single approach that is a clear winner
from the SLU evaluations performed on these corpora.
Statistical methods have proven to be more robust at the cost
of having a large annotated training corpus, which is not always
feasible. Among the statistical methods proposed for SLU, dis-
criminative methods such as conditional random fields provide
an advantage over generative methods, as reported in [30] on
the MEDIA corpus. However, as pointed out in the same paper,
discriminative methods seem to be more affected by errors and
lack of consistency in the training corpus annotations than
generative methods.

DEALING WITH MULTIPLE ASR HYPOTHESES
One way of dealing with speech recognition errors is to take
into account not only the best word string obtained thanks
to ASR models but a set of multiple hypotheses that can be
represented as a word lattice or an n-best list. When lattices
of word hypotheses are generated, it is likely that the uttered
words are hypothesized somewhere in the lattice, making it
possible to obtain coherent semantic hypotheses from
selected signs. Algorithms have been proposed for generat-
ing probabilistic lattices of conceptual constituent hypothe-
ses from a probabilistic lattice of word hypotheses or during
speech decoding.

In [22] the conceptual decoding process is seen as a transla-
tion process in which stochastic language models are imple-
mented by finite state machines (FSMs) that output labels for
semantic constituents. There is an FSM for each elementary
conceptual constituent. Each FSM implements a finite state
approximation of a natural language grammar. These FSMs are
transducers that take words as input and output the concept tag
conveyed by the accepted phrase. At decoding time they are
applied to the word graphs output by the ASR decoder by means
of a composition operation. This word/concept lattice is then
rescored using an HMM-based concept tagger. This approach is

called an integrated decoding approach as the ASR and SLU
processes are done together by looking at the same time for the
best sequence of words and concepts.

Another example of an integrated approach that takes as
input a word lattice is proposed at AT&T in [4]. A mixture
language model for a multimodal application is described

with a component trained with
in-domain data and another
obtained with data generated by a
grammar. Understanding is the
recognition of the sequence of
predicate/argument tags that
maximize P(T |W ) where T is
the tag sequence and W is the

sentence. An approximation is made by considering bigrams
and trigrams of tags.

At IBM [24], a system is proposed that generates an n-best
list of word hypotheses with a dialog state-dependent trigram
language model (LM) and rescores them with two semantic
models. An embedded context-free semantic grammar (EG) is
defined for each concept that performs concept spotting by
searching for phrase patterns corresponding to concepts.
Trigram probabilities are used for scoring hypotheses with the
EG model. A second LM, called maximum entropy LM
(MELM), computes probabilities of a word, given the history,
using an ME model.

SEMANTIC CONFIDENCE
Current state-of-the-art ASR and SLU systems make errors that
have to be identified in order to apply appropriate strategies for
performing communicative and system actions, such as error
correction and repair in human-computer dialogs. The posterior
probability P(I |Y ) of an interpretation I given a time sequence
of acoustic features Y is not the best reliability indicator for a
hypothesis as suitable confidence indices should also take into
account information that is not coded in Y, such as the coher-
ence of the available hypotheses with the entire dialog history,
including system prompts and repairs.

Estimating the confidence of an interpretation raises several
issues: choosing the span of the confidence measures (word,
conceptual constituent, or utterance), defining the set of fea-
tures involved in the confidence estimation (ASR features, SLU
features, dialog context), combining efficiently the different fea-
tures, and choosing a decision strategy that takes into account
all the features obtained. 

CONFIDENCE AT THE WORD,
CONCEPT, AND UTTERANCE LEVELS
Two levels of features to train confidence models for words are
proposed in [12]. They are word-level features that focus only on
the reliability of acoustic samples, and utterance-level features
that concern the appropriateness of the whole utterance in
which the word is found. The assumption is made that if the
whole utterance is unreliable, then the word contained in that
utterance is likely to be incorrect.

IEEE SIGNAL PROCESSING MAGAZINE [55] MAY 2008

THE SYNTAX OF A LANGUAGE
IS SEEN AS ALGEBRA AND

GRAMMATICAL CATEGORIES
ARE SEEN AS FUNCTIONS.



Confidence measures based on N-best lists and content
words are defined as the sum of the posterior probabilities of
sentences in an N-best list containing the content word.
Posterior probabilities can be obtained from word graphs and
concept graphs as in [10].

COMBINING CONFIDENCE FEATURES
With the purpose of combining multiple knowledge sources at
different levels, in [24] previous approaches to the integration of
semantic and other ASR features are reviewed and it is observed
that, in most cases, their integration into the decision process is
rather ad hoc. Word and concept-
level confidence annotations are
considered. Two methods are pro-
posed that use two sets of statisti-
cal features to model the presence
of semantic information in a sen-
tence. The first relies on a seman-
tic tree where node and extension
scores are used. Scores are based
on the assumption that sentences that are grammatically cor-
rect and likely to be free of recognition errors tend to be easier
to parse and should receive high confidence. The second tech-
nique is based on joint ME modeling of the words of a sentence
and the semantic parse tree.

INTEGRATING DIALOG CONTEXT
In spoken dialog systems, it is important to use confidence
measures that integrate information related to the whole dia-
log context rather than just having features based only on
acoustic and language model cues. The integration of dialog
manager expectations is proposed in [21]. The dialog expecta-
tions are represented by clusters of dialog prompts that are
used as features, in conjunction with acoustic and linguistic
features, in a decision tree trained to assign confidence to a
semantic interpretation.

SLU AND DIALOG STRATEGIES BASED 
ON CONFIDENCE SCORES
In [22] an interpretation strategy implemented by a decision
tree is proposed. In addition to confidence measures given at the
concept level, a limited set of reliability states is defined for
characterizing a whole utterance interpretation. The set of fea-
tures used involves semantic information through semantic
classifiers, linguistic and acoustic information, and dialog expec-
tations. Some semantic confidence indicators are based on the
agreement of semantic interpretations obtained by different
classification methods. The reliability state of a hypothesis cor-
responds to a global confidence measure. The kinds of interpre-
tation errors that are expected in each state can also be
predicted and an error correction strategy that can reject or add
conceptual constituents to the best interpretation obtained in
the first stage of the SLU process is proposed. Dialog managers
with error-handling strategies based on confidence measures
have also been proposed. In [27], a Markov decision processes

(MDP) approach is used where concepts are represented by par-
tially observable MDPs, with three underlying hidden states:
correct, incorrect, and empty. The belief state is constructed at
each time step from the confidence score of the top hypothesis
for the concept.

ADAPTIVE LEARNING
The SLU prediction models described in the previous sec-
tions require corpora with annotations (X, Y) where the
observation vector X is aligned with a label vector Y. For
example, X corresponds to the sequence of words output by

the ASR and Y is expected to be
the aligned sequence of semantic
units or concepts. The approaches
described so far for SLU use algo-
rithms that process the observa-
tion X (e.g., words) and Y in batch
mode (i.e., infinite time horizon).
In the context of real-time spoken
dialog systems, online learning

models of SLU are required. In this class of learning algo-
rithms the statistical parameters of the model are updated on a
sample-by-sample basis and are actively learned. A constraint
is applied on the time horizon of the learning model. SLU
architectures with incremental learning are crucial to mimic
human performance in sentence processing. This is certainly
an area of research in its infancy and will likely receive more
attention in next-generation spoken dialog systems. Active
learning is a component of the adaptive prediction model that
is able to select samples that are more likely to improve its
performance. There have been important results in so-called
batch-mode active learning motivated by the cost of manually
annotating X with Y for training SLU models. Some open
issues in the development of such models are how to collect a
semantically annotated corpus while the system is not
deployed and how off-the-shelf corpora from different applica-
tions can be used in the training process. Even when unlabeled
data are available, manual annotation of a large number of
utterances is labor intensive and time consuming. To alleviate
this problem, active and unsupervised learning mechanisms
have been proposed [11]. Active learning aims to minimize the
number of labeled utterances by automatically selecting the
utterances that are likely to be the most informative for anno-
tation. The unlabeled examples can further be exploited using
semi-supervised learning methods. In the machine learning
literature certainty-based and committee-based selective sam-
pling methods have been proposed for active learning [11]. It
was observed that there is a reverse correlation between the
confidence score given by the classifier used in these methods
and the informativeness of that utterance to be interpreted.
That is, the higher the SLU confidence scores for an utterance,
the less informative is that utterance. Active learning for
intent determination resulted in a 75% reduction of the
amount of manually labeled data needed for a large-scale call
classification application. Note that the semantic confidence
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score estimation presented in the previous section has direct
implication on active and semi- or unsupervised learning. 

The process of learning is coupled with the annotation lexi-
con (Y) and the evaluation metrics. The output label set Y
should be such that it is nonambiguous (with respect to human
annotation error), easy to acquire (with respect to cost and
time), and effective in terms of learning rate. In the ATIS project
the so-called common answer specification (CAS) metric was
designed to associate a natural language query to a set of
answers generated by a predefined syntax. Such an annotation
model was expensive both in terms of time and cost, as well as
oriented to a database query task. More recently, a simpler and
domain-dependent model of concept stream associated to each
spoken query has been adopted. In this case, Y = (y1, . . . yM),
where yi belongs to the set of predefined labels that could be
domain dependent or independent. The evaluation metric in
this case is the concept error rate (CER), which is a valuable tool
for system development and evaluation. In the latter case the
burden is on the annotation designer to select a set of concepts
(and its ontology), which is stable (with respect to annotator
agreement), scalable, and portable to other domains. SLU evalu-
ation is still an open research issue and is tightly coupled with
the evaluation of conversational systems. The ability to evaluate
SLU in the context of spoken dialog systems will be one of the
key aspects of next-generation SLU interfaces. 

Another challenging aspect of SLU for third-generation con-
versational systems is the ability to learn the semantic interpre-
tation drawing from a priori knowledge models as well as
grounding it in the physical/virtual world. Machines should be
able to leverage from the speech channel as well as from multi-
modal signs (e.g., pen gestures, visual cues, etc.), following an
incremental understanding process. 

CONCLUSIONS AND FUTURE PERSPECTIVES
SLU is one of the fundamental processes in spoken communica-
tion. Among the many important related research problems, it
is worth mentioning the study of computational models of
semantic theories, the decision process about interpretation
with imprecise sources of knowledge, and imprecise decoding of
signs from the speech signal. Decisions about interpretation
have to be made by minimizing the risk of errors. As models and
hypotheses are imprecise, probability distributions have to be
associated with them. Evaluation of the confidence of interpre-
tation hypotheses is important for the strategy that has to use
them. Interpretation knowledge is based on knowledge that can
be partially or totally acquired from annotated corpora.
Semantic annotation is costly, and methods for incremental
learning are of fundamental importance. Finally, research on
SLU has the potential to create technology for (partial) automa-
tion of call centers providing services such as customer care,
help desk, and opinion analysis.

Major directions for future research in SLU are: meaning
representation, the definition and representation of signs, the
conception of relations between signs and meaning and
between instances of meaning, processes for sign extraction,

generation of hypotheses about units of meaning (also called
semantic constituents), and constituent composition into
semantic structures. As processes generate interpretation
hypotheses, other challenging problems are the robustness
and evaluation of confidence for semantic hypotheses, the
design of interpretation knowledge sources using human
knowledge, automatic learning of relations from annotated
corpora, and the collection and semantic annotation of corpo-
ra with limited human effort.
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